• Title/Summary/Keyword: uniform metric

Search Result 34, Processing Time 0.029 seconds

THE PSEUDO ORBIT TRACING PROPERTY AND EXPANSIVENESS ON UNIFORM SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.255-267
    • /
    • 2022
  • Uniform space is a generalization of metric space. The main purpose of this paper is to extend several results contained in [5, 6] which have for an expansive homeomorphism with the pseudo orbit tracing property(POTP in short) on a compact metric space (X, d) for an expansive homeomorphism with the POTP on a compact uniform space (X, 𝒰). we characterize stable and unstable sets, sink and source and saddle, recurrent points for an expansive homeomorphism which has the POTP on a compact uniform space (X, 𝒰).

ON THE ERGODIC SHADOWING PROPERTY THROUGH UNIFORM LIMITS

  • Namjip Koo;Hyunhee Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.75-80
    • /
    • 2024
  • In this paper, we study some dynamics of the uniform limits of sequences in dynamical systems on a noncompact metric space. We show that if a sequence of homeomorphisms on a noncompact metric space has the uniform ergodic shadowing property, then the uniform limit also has the ergodic shadowing property. Then we apply this result to nonwandering maps.

TOPOLOGICALLY STABLE POINTS AND UNIFORM LIMITS

  • Namjip Koo;Hyunhee Lee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1043-1055
    • /
    • 2023
  • In this paper we study a pointwise version of Walters topological stability in the class of homeomorphisms on a compact metric space. We also show that if a sequence of homeomorphisms on a compact metric space is uniformly expansive with the uniform shadowing property, then the limit is expansive with the shadowing property and so topologically stable. Furthermore, we give examples to illustrate our results.

The History of Uniform Structures (고른 구조의 역사)

  • 이승온;민병수
    • Journal for History of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In the Analysis, there have been many cases of confusion on topological structure and uniform structure because they were dealt in metric spaces. The concept of metric spaces is generalized into that of topological spaces but its uniform aspect was much later generalized into the uniform structure by A. Weil. We first investigate Weil's life and his mathematical achievement and then study the history of the uniform structure and its development.

  • PDF

Common Fixed Point Theorems in Probabllistic Metric Spaces and Extension to Uniform Spaces

  • Singh, S.L.;Pant, B.D.
    • Honam Mathematical Journal
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 1984
  • Let(X, $\Im$) be a probabilistic metric space with a t-norm. Common fixed point theorems and convergence theorems generalizing the results of Ćirić, Fisher, Sehgal, Istrătescu-Săcuiu and others are proved for three mappings P,S,T on X satisfying $F_{Pu, Pv}(qx){\geq}min\left{F_{Su,Tv}(x),F_{Pu,Su}(x),F_{Pv,Tv}(x),F_{Pu,Tv}(2x),F_{Pv,Su}(2x)\right}$ for every $u, v {\in}X$, all x>0 and some $q{\in}(0, 1)$. One of the main results is extended to uniform spaces. Mathematics Subject Classification (1980): 54H25.

  • PDF

Efficient Piecewise-Cubic Polynomial Curve Approximation Using Uniform Metric

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.320-322
    • /
    • 2008
  • We present efficient algorithms for solving the piecewise-cubic approximation problems in the plane. Given a set D of n points in the plane, we find a piecewise-cubic polynomial curve passing through only the points of a subset S of D and approximating the other points using the uniform metric. The goal is to minimize the size of S for a given error tolerance $\varepsilon$, called the min-# problem, or to minimize the error tolerance $\varepsilon$ for a given size of S, called the min-$\varepsilon$ problem. We give algorithms with running times O($n^2$ logn) and O($n^3$) for both problems, respectively.

Intuitionistic Fuzzy Metric Spaces (직관적 퍼지 거리공간)

  • Park, Jin-Han;Kwun, Young-Chul;Park, Jong-Seo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.359-362
    • /
    • 2004
  • Using the idea of intuitionistic fuzzy set due to Atanassov, we define the notion of intuitionistic fuzzy metric spaces as a natural generalization of fuzzy metric spaces due to George and Veeramani and prove some known results of metric spaces including Baire's theorem and the Uniform limit theorem for intuitionistic fuzzy metric spaces.

  • PDF

FIXED POINTS OF BETTER ADMISSIBLE MAPS ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.885-899
    • /
    • 2000
  • We obtain generalized versions of the Fan-Browder fixed point theorem for G-convex spaces. We define the class B of better admissible multimaps on G-convex spaces and show that any closed compact map in b fro ma locally G-convex uniform space into itself has a fixed point.

  • PDF