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INNER UNIFORM DOMAINS, THE QUASIHYPERBOLIC

METRIC AND WEAK BLOCH FUNCTIONS

Ki Won Kim

Abstract. We characterize the class of inner uniform domains in terms
of the quasihyperbolic metric and the quasihyperbolic geodesic. We also
characterize uniform domains and inner uniform domains in terms of weak

Bloch functions.

1. Introduction

Suppose that D is a subdomain of euclidean n-space Rn, n ≥ 2. Let B(x, r)
be the closure of B(x, r) = {w : |w − x| < r} for x ∈ Rn and r > 0. Let ℓ(γ)
denote the euclidean length of an arc γ and dist(A,B) denote the euclidean
distance from A to B for two sets A,B ⊂ Rn.

A domain D in Rn is said to be b-uniform if there is a constant b ≥ 1 such
that each pair of points x1, x2 ∈ D can be joined by a rectifiable arc γ in D
with

ℓ(γ) ≤ b|x1 − x2|
and with

(1) min
j=1,2

ℓ(γ(xj , x)) ≤ b dist(x, ∂D)

for each x ∈ γ, where γ(xj , x) is the part of γ between xj and x. We call γ
satisfying (1) a double b-cone arc.

We say that a domain D in Rn is b-inner uniform if there is a constant b ≥ 1
such that each pair of points x1, x2 ∈ D can be joined by a double b-cone arc
γ in D which satisfies

(2) ℓ(γ) ≤ bλD(x1, x2),
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where λD(x1, x2) = inf ℓ(α) and infimum is taken over all rectifiable arcs α
which join x1 and x2 in D. We say that γ satisfies the Gehring-Hayman
inequality if it satisfies (2). Obviously |x1 − x2| ≤ λD(x1, x2).

A domain D in Rn is said to be b-John if there is a constant b ≥ 1 such that
each pair of points x1, x2 ∈ D can be joined by a double b-cone arc γ in D.

An inner uniform domain is a domain intermediate between a uniform do-
main and a John domain. Balogh and Volberg introduced an inner uniform
domain in connection with conformal dynamics [1], [2]. See also [3], [14].

For each pair of x1, x2 ∈ D ⊂ Rn, we define the quasihyperbolic metric kD
in D by

kD(x1, x2) = inf
γ

∫
γ

ds

dist(x, ∂D)
,

where the infimum is taken over all rectifiable arcs γ joining x1 to x2 in D. A
quasihyperbolic geodesic is an arc γ along which the above infimum is obtained.

If D is c-uniform, then a quasihyperbolic geodesic γ ⊂ D joining two points
in D is a double b-cone arc with b = b(c) [7]. For John domains, it is true when
n = 2 and D is simply connected, but in general it is not true when n > 2 or
D is multiply connected [5].

In a simply connected domain D ⊂ R2, quasihyperbolic geodesics satisfy
the Gehring-Hayman inequality with an absolute constant b [6]. In a domain
D ⊂ Rn, quasihyperbolic geodesics satisfy the inequality with b = b(a,K, n) if
D is the image of an a-uniform domain under a K-quasiconformal mapping [9].

In Section 2, we show that an inner uniform domain D ⊂ Rn is a domain in
which a quasihyperbolic geodesic is a double cone arc and satisfies the Gehring-
Hayman inequality (see Theorem 2.1).

We have some important bounds for quasihyperbolic metric and the bounds
involve the translation invariant metric jD, introduced by Gehring and Osgood
[7], given by

jD(x1, x2) =
1

2
log(1 + rD(x1, x2))

for x1, x2 ∈ D ⊂ Rn, where

rD(x1, x2) =
|x1 − x2|

minj=1,2 dist(xj , ∂D)
.

For any proper subdomain D of Rn we have

(3) jD(x1, x2) ≤ kD(x1, x2)

for x1, x2 ∈ D [8]. In [7], Gehring and Osgood observed that this bound may
be reversed exactly if the domain is uniform as follows (see also [4, Theorem
5.3.5], [14]).

Theorem 1.1. A domain D in Rn is b-uniform if and only if there is a constant
a such that

kD(x1, x2) ≤ ajD(x1, x2)

for all x1, x2 ∈ D, where a and b depend only on each other.
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We now define a metric j′D by

j′D(x1, x2) =
1

2
log(1 + r′D(x1, x2))

for x1, x2 ∈ D ⊂ Rn, where

r′D(x1, x2) =
λD(x1, x2)

minj=1,2 dist(xj , ∂D)
.

In Section 2, we also give a characterization of inner uniform domains in
terms of kD and j′D which is an analogue of Theorem 1.1 (see Theorem 2.1).

A function f analytic in D ⊂ R2 is said to be a Bloch function, or f ∈ B(D),
if

||f ||B(D) = sup
z∈D

|f ′(z)|dist(z, ∂D) < ∞.

A real valued harmonic function u in D ⊂ Rn is said to be a Bloch function,
or u ∈ Bh(D), if

||u||Bh(D) = sup
x∈D

|∇u(x)|dist(x, ∂D) < ∞.

If f ∈ B(D), then

|f ′(z)| ≤ ||f ||B(D)
1

dist(z, ∂D)
,

and thus

|f(x1)− f(x2)| ≤ ||f ||B(D)

∫
γ

ds

dist(x, ∂D)
,

where γ is a rectifiable arc joining x1 to x2 in D. Hence we generalize Bloch
function in terms of quasihyperbolic metric as follows, see [4].

A function f : D → Rp in D ⊂ Rn is said to be a weak Bloch function, or
f ∈ Bw(D), if there is a constant m > 0 such that

|f(x1)− f(x2)| ≤ mkD(x1, x2), ∀x1, x2 ∈ D.

Let

||f ||Bw(D) = inf{m > 0 | |f(x1)− f(x2)| ≤ mkD(x1, x2), ∀x1, x2 ∈ D}.

Remark 1.2. For D ⊂ R2, B(D) is the intersection of Bw(D) with the class of
analytic functions in D.

The following two theorems in [4] and [13] show that a simply connected
uniform (or John) domain D ⊂ R2 is characterized by moduli of continuity of
Bloch functions with respect to jD (or j′D).

Theorem 1.3. Let D ⊂ R2 be a simply connected proper domain. Then the
followings are equivalent.

(i) D is c-uniform.
(ii) There is a constant c such that for f ∈ B(D)

|f(z1)− f(z2)| ≤ c||f ||B(D)jD(z1, z2), ∀z1, z2 ∈ D.
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(iii) There is a constant c such that for u ∈ Bh(D)

|u(z1)− u(z2)| ≤ c||u||Bh(D)jD(z1, z2), ∀z1, z2 ∈ D.

The constants c are not necessarily the same, but they depend only on each
other.

Theorem 1.4. Let D ⊂ R2 be a simply connected proper domain. Then the
followings are equivalent.

(i) D is c-John.
(ii) D is c-inner uniform.
(iii) There is a constant c such that for f ∈ B(D)

|f(z1)− f(z2)| ≤ c||f ||B(D)j
′
D(z1, z2), ∀z1, z2 ∈ D.

(iv) There is a constant c such that for u ∈ Bh(D)

|u(z1)− u(z2)| ≤ c||u||Bh(D)j
′
D(z1, z2), ∀z1, z2 ∈ D.

The constants c are not necessarily the same, but they depend only on each
other.

The equivalence of (i) and (ii) in Theorem 1.4 is from [5] and [6] and see
also [14, 2.18 examples]. In Section 3, we characterize weak Bloch functions
in terms of moduli of continuity with respect to jD (see Theorem 3.1). Then
we give higher dimensional versions of Theorem 1.3 and Theorem 1.4 by using
Theorem 2.1 and Theorem 3.1.

2. Inner uniform domains and the quasihyperbolic metric

Theorem 2.1. Let D be a proper subdomain of Rn. Then the followings are
equivalent.

(i) D is b-inner uniform.
(ii) There is a constant b such that

(4) kD(x1, x2) ≤ bj′D(x1, x2), ∀x1, x2 ∈ D.

(iii) Every quasihyperbolic geodesic in D is a double b-cone arc and satisfies
the Gehring-Hayman inequality.

The constants b are not necessarily the same, but they depend only on each
other.

Remark 2.2. In [14, Theorem 3.5] it shows that the class of inner uniform
domains is actually equal to the class of uniformly John domains. Therefore (i)
and (ii) of Theorem 2.1 are equivalent to Theorem 2.1 in [10]. The proofs are
similar and here we use the inner length metric instead of the inner diameter
metric. For a simply connected domain D ⊂ R2, the equivalence of (i) and (ii)
was proved in [11, Theorem 4.1]. For a domain D ⊂ Rn, n > 2, the proof of
Theorem 3.6 in [12] shows that (ii) implies that every quasihyperbolic geodesic
in D is a double b-cone arc and thus (ii) implies that D is John. But in [12] she
did not show the converse, and here (iii) in Theorem 2.1 gives two conditions
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for the converse. For the converse we need to show that (ii) of Theorem 2.1
implies that every quasihyperbolic geodesic in D satisfies the Gehring-Hayman
inequality. To deal with it, we need the inner length metric instead of the inner
diameter metric.

The proof of Theorem 2.1 is similar to those of Theorem 1 and Theorem 2
in [7] and also to the proof of Theorem 2.1 in [10]. But for the completeness
we give the whole proof.

Proof of Theorem 2.1. First we show that (i) implies (ii). Suppose that D is
b-inner uniform. Then there is a constant b ≥ 1 such that each pair of points
x1, x2 ∈ D can be joined by an arc γ in D which satisfies (1) and (2). Choose
x0 ∈ γ so that ℓ(γ(x0, x1)) = ℓ(γ(x0, x2)). Then by the triangle inequality it is
sufficient to show that

(5) kD(xj , x0) ≤ b′ log

(
λD(x1, x2)

dist(xj , ∂D)
+ 1

)
for j = 1, 2, where b′ = 2b(2b+ 1). By symmetry we may assume that j = 1.

Suppose first that

(6) ℓ(γ(x1, x0)) ≤
b

b+ 1
dist(x1, ∂D).

Then x0 ∈ B
(
x1,

b
b+1dist(x1, ∂D)

)
. If x ∈ [x1, x0], then

dist(x, ∂D) ≥ dist(x1, ∂D)− |x1 − x| ≥ 1

b+ 1
dist(x1, ∂D)

and hence

(7)
|x1 − x|+ dist(x1, ∂D) ≤ b

b+ 1
dist(x1, ∂D) + dist(x1, ∂D)

≤ (2b+ 1)dist(x, ∂D).

Thus by (2), (7) and [11, Lemma 4.3]

kD(x1, x0) ≤
∫
[x1,x0]

ds

dist(x, ∂D)

≤
∫ |x1−x0|

0

2b+ 1

s+ dist(x1, ∂D)
ds

≤ (2b+ 1) log

(
ℓ(γ)

dist(x1, ∂D)
+ 1

)
≤ (2b+ 1)b log

(
λD(x1, x2)

dist(x1, ∂D)
+ 1

)
.

This implies (5).
Next suppose that (6) does not hold and choose y1 ∈ γ(x1, x0) so that

ℓ(γ(x1, y1)) =
b

b+ 1
dist(x1, ∂D).
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If x ∈ γ(y1, x0), then by (1)

dist(x, ∂D) ≥ 1

b
ℓ(γ(x1, x))

and hence again by (2) and [11, Lemma 4.3]

kD(y1, x0) ≤
∫
γ(y1,x0)

ds

dist(x, ∂D)

≤ b

∫
γ(y1,x0)

ds

ℓ(γ(x1, y1)) + ℓ(γ(y1, x))

= b

∫ ℓ(γ(y1,x0))

0

ds
b

b+1dist(x1, ∂D) + s

≤ b log

(
b+ 1

b

ℓ(γ(x1, x0))

dist(x1, ∂D)
+ 1

)
≤ (b+ 1) log

(
ℓ(γ)

dist(x1, ∂D)
+ 1

)
≤ (b+ 1)b log

(
λD(x1, x2)

dist(x1, ∂D)
+ 1

)
.

We also have

kD(x1, y1) ≤ (2b+ 1)b log

(
λD(x1, x2)

dist(x1, ∂D)
+ 1

)
by what was proved above. Then (5) follows from the triangle inequality. Thus
(i) implies (ii).

Next we show that (ii) implies (iii). Suppose that (ii) holds. Fix x1, x2 ∈ D
and let γ be the quasihyperbolic geodesic joining x1, x2 in D. We may assume
that dist(x1, ∂D) ≥ dist(x2, ∂D). We want to show that (1) and (2) with
b′ = max{e2, 2a(2 + ea)ea}, a = 4b2. Set

r = min{sup
x∈γ

dist(x, ∂D), 2λD(x1, x2)}.

We shall consider the cases where

r < dist(x1, ∂D)

and where

(8) r ≥ dist(x1, ∂D)

separately.
Suppose first that r < dist(x1, ∂D). Then r = 2λD(x1, x2) and

|x1 − x2| <
1

2
dist(x1, ∂D) ≤ dist(x, ∂D)
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for all x on the segment β = [x1, x2] ⊂ D. Thus λD(x1, x2) = |x1 − x2| and
hence

kD(x1, x2) ≤
∫
β

ds

dist(x, ∂D)
≤ 2|x1 − x2|

dist(x1, ∂D)
≤ 1.

Since kD(x, x1) ≤ kD(x1, x2) for x ∈ γ, from [8, Lemma 2.1]

e−1dist(x1, ∂D) ≤ dist(x, ∂D) ≤ edist(x1, ∂D)

for each x ∈ γ. Thus

ℓ(γ) ≤ edist(x1, ∂D)

∫
γ

1

dist(x, ∂D)
ds

= edist(x1, ∂D)kD(x1, x2) ≤ 2eλD(x1, x2)

and that for each x ∈ γ

ℓ(γ(x1, x)) ≤ ℓ(γ) ≤ edist(x1, ∂D)kD(x1, x2)

≤ edist(x1, ∂D) ≤ e2dist(x, ∂D)

and hence γ holds (1) and (2).
Suppose next that (8) holds. By compactness there is x0 ∈ γ with

r ≤ sup
x∈γ

dist(x, ∂D) = dist(x0, ∂D).

For j = 1, 2 let mj be the largest integer for which

2mjdist(xj , ∂D) ≤ r,

and let yj be the first point of γ(xj , x0) with

dist(yj , ∂D) = 2mjdist(xj , ∂D)

as we traverse γ from xj towards x0. Then

(9) dist(yj , ∂D) ≤ r < 2dist(yj , ∂D).

We first show that
(10)

ℓ(γ(xj , yj)) ≤ adist(yj , ∂D), ℓ(γ(xj , x)) ≤ ae
a
2 dist(x, ∂D), ∀x ∈ γ(xj , yj)

for j = 1, 2 and a = 4b2. We need only consider the case where j = 1 and
m1 ≥ 1. Choose points z1, . . . , zm1+1 ∈ γ(x1, y1) so that z1 = x1 and zk is the
first point of γ(x1, y1) with

(11) dist(zk, ∂D) = 2k−1dist(x1, ∂D)

as we traverse γ from x1 towards y1. Then zm1+1 = y1. Fix k, 1 ≤ k ≤ m1,
and let

γk = γ(zk, zk+1) and t =
ℓ(γk)

dist(zk, ∂D)
.

If x ∈ γk, then

dist(x, ∂D) ≤ dist(zk+1, ∂D) = 2dist(zk, ∂D)
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and

t ≤ 2

∫
γk

ds

dist(x, ∂D)
= 2kD(zk, zk+1).

Next since the function f(x) =
√
x − log(x + 1) is increasing for x > 0 with

f(0) = 0,

j′D(zk, zk+1) ≤ log

(
λD(zk, zk+1)

dist(zk, ∂D)
+ 1

)
≤ log(t+ 1) ≤

√
t.

Hence (4) implies that

t ≤ 2kD(zk, zk+1) ≤ 2bj′D(zk, zk+1) ≤ 2b
√
t,

whence t ≤ 4b2 = a and

(12) kD(zk, zk+1) ≤ b
√
t ≤ a

2
.

Next if x ∈ γk, then from [8, Lemma 2.1] and (12)

0 < log
dist(zk+1, ∂D)

dist(x, ∂D)
≤ kD(x, zk+1) ≤ kD(zk, zk+1) <

a

2
.

We conclude that

(13) ℓ(γk) ≤ adist(zk, ∂D), dist(zk+1, ∂D) ≤ e
a
2 dist(x, ∂D), ∀x ∈ γk,

for k = 1, . . . ,m1. Hence by (11) and (13)

ℓ(γ(x1, y1)) =

m1∑
k=1

ℓ(γk) ≤ a

m1∑
k=1

dist(zk, ∂D)

= a(2m1 − 1)dist(x1, ∂D) < adist(y1, ∂D).

This proves the first inequality in (10). For the second, if x ∈ γ(x1, y1), then
x ∈ γk for some k, 1 ≤ k ≤ m1, and

ℓ(γ(x1, x)) ≤
k∑

i=1

ℓ(γi) ≤ a
k∑

i=1

dist(zi, ∂D)

< adist(zk+1, ∂D) ≤ ae
a
2 dist(x, ∂D)

again by (11) and (13). This completes the proof of (10).
We show next that if dist(y1, ∂D) ≤ dist(y2, ∂D), then

(14)
ℓ(γ(y1, y2)) ≤ aeadist(y1, ∂D),

dist(y2, ∂D) ≤ eadist(x, ∂D), ∀x ∈ γ(y1, y2).

We may assume that y1 ̸= y2 since otherwise there is nothing to prove. By the
hypothesis (8), we have the following two possible subcases:

(15) r = sup
x∈γ

dist(x, ∂D),

(16) r = 2λD(x1, x2).
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If (15) holds, set

t =
ℓ(γ(y1, y2))

dist(y1, ∂D)
.

If x ∈ γ(y1, y2), then by (9)

dist(x, ∂D) ≤ r ≤ 2dist(y1, ∂D),

and we can repeat the proof of the first part of (13), with y1 in place of zk and
y2 in place of zk+1 to obtain (14).

Next if (16) holds, then by (9) and (10)

λD(y1, y2) ≤ ℓ(γ(x1, y1)) + ℓ(γ(x2, y2)) + λD(x1, x2)

≤ adist(y1, ∂D) + adist(y2, ∂D) +
r

2
≤ 4adist(y1, ∂D).

Therefore

kD(y1, y2) ≤ bj′D(y1, y2) ≤ b log

(
λD(y1, y2)

dist(y1, ∂D)
+ 1

)
= b log(4a+ 1) ≤ b

√
4a = a.

If x ∈ γ(y1, y2), then by [8, Lemma 2.1]

e−adist(y2, ∂D) ≤ dist(x, ∂D) ≤ eadist(y1, ∂D)

and thus

ℓ(γ(y1, y2)) ≤ eadist(y1, ∂D)kD(y1, y2) ≤ aeadist(y1, ∂D)

and again we obtain (14).
We now complete the proof that (ii) implies (iii) as follows. By relabelling

we may assume that dist(y1, ∂D) ≤ dist(y2, ∂D). Then

ℓ(γ) = ℓ(γ(x1, y1)) + ℓ(γ(x2, y2)) + ℓ(γ(y1, y2))

≤ a(2 + ea)dist(y2, ∂D) ≤ a(2 + ea)r ≤ 2a(2 + ea)λD(x1, x2)

by (9), (10) and (14). This establishes (2). Next if x ∈ γ, then either x ∈
γ(xj , yj) and

min
j=1,2

ℓ(γ(xj , x)) ≤ ℓ(γ(xj , x)) ≤ ae
a
2 dist(x, ∂D)

by (10), or x ∈ γ(y1, y2) and

min
j=1,2

ℓ(γ(xj , x)) ≤
1

2
ℓ(γ) ≤ 1

2
a(2 + ea)dist(y2, ∂D) ≤ 1

2
a(2 + ea)eadist(x, ∂D)

by (14). In each case we obtain (1).
It is obvious that (iii) implies (i) and the proof is complete. □
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3. Weak Bloch extension property on the domains

We characterize weak Bloch functions in terms of moduli of continuity with
respect to jD.

Theorem 3.1. Let f : D → Rp be a function in D ⊂ Rn. Then the followings
are equivalent.

(i) f ∈ Bw(D).
(ii) There is a constant m such that

|f(x1)− f(x2)| ≤ mjD(x1, x2),

for all x1, x2 ∈ D with |x1 − x2| < dist(x1, ∂D).

Here all constants depend only on each other.

Proof. Suppose that (i) holds and let x1, x2 ∈ D with |x1−x2| < dist(x1, ∂D).
Let γ be the segment [x1, x2] ⊂ D. Then

ℓ(γ) = |x1 − x2|
and

min
j=1,2

ℓ(γ(xj , x)) ≤ dist(x, ∂B) ≤ dist(x, ∂D)

for all x ∈ γ, where B = B(x1, dist(x1, ∂D). Following the same argument used
in the proof of [7, Theorem 1] or [11, Theorem 4.1] we get

kD(x1, x2) ≤
∫
γ

ds

dist(x, ∂D)
≤ c0 log(1 + rD(x1, x2)) = c0jD(x1, x2),

where c0 is an absolute constant. Thus by (i)

|f(x1)− f(x2)| ≤ mkD(x1, x2) ≤ mc0jD(x1, x2)

for some constant m > 0. Now suppose that (ii) holds. Fix x1, x2 ∈ D and
let γ be the quasihyperbolic geodesic in D with endpoints x1 and x2. Let γ(s)
be the parameterization of γ with respect to arc length measured from x1,
ℓ = ℓ(γ). Let y1 = x1. We choose positive numbers ri and ℓi, and points yi ∈ γ
as follows:

r1 =
1

2
dist(y1, ∂D), ℓ1 = max{s : γ(s) ∈ B(y1, r1)}, y2 = γ(ℓ1);

r2 =
1

2
dist(y2, ∂D), ℓ2 = max{s : γ(s) ∈ B(y2, r2)}, y3 = γ(ℓ2);

and so on. After a finite number of steps, say N , ℓN = ℓ and the process stops.
Let yN+1 = x2. So by (ii) and [5, Lemma 2.6] for some constant m > 0

|f(x1)− f(x2)| ≤
N∑
i=1

|f(yi)− f(yi+1)| ≤
N∑
i=1

m log

(
1 +

|yi − yi+1|
dist(yi+1, ∂D)

)

≤ m

N∑
i=1

kD(γ(yi, yi+1)) = mkD(x1, x2).
□



INNER UNIFORM DOMAINS AND WEAK BLOCH FUNCTIONS 21

If a function f in D ⊂ Rn satisfies

(17) |f(x1)− f(x2)| ≤ mjD(x1, x2),

for all x1, x2 ∈ D, then f ∈ Bw(D) by Theorem 3.1 or (3). Conversely, f ∈
Bw(D) holds (17) locally by Theorem 3.1. Thus it is natural to ask when
f ∈ Bw(D) holds (17) globally. We called it weak Bloch extension property.

For n = 2, Theorem 1.3 gives an answer. Higher dimensional versions of
Theorem 1.3 was partly given in [4] and [13] as follows.

Theorem 3.2. Suppose that D ⊂ Rn is a proper subdomain and f : D → Rp

is a function. Then D is b-uniform if and only if there is a constant c such
that

|f(x1)− f(x2)| ≤ jD(x1, x2)

for all x1, x2 ∈ D with |x1 − x2| < dist(x1, ∂D) implies

|f(x1)− f(x2)| ≤ cjD(x1, x2), ∀x1, x2 ∈ D.

Here b and c depend only on each other [13, Theorem 6.1].

Theorem 3.3. Suppose that D ⊂ Rn is a b-uniform domain. Then for u :
D → R, u ∈ Bh(D),

|u(x1)− u(x2)| ≤ 4b2||u||Bh(D)jD(x1, x2)

for all x1, x2 ∈ D [4, Corollary 5.4.17].

We can rewrite Theorem 3.2 by using Theorem 3.1 as follows.

Corollary 3.4. Let D ⊂ Rn be a proper subdomain. Then the followings are
equivalent.

(i) D is b-uniform.
(ii) There is a constant c such that for f ∈ Bw(D), f : D → Rp, with

||f ||Bw(D) ≤ 1,

|f(x1)− f(x2)| ≤ cjD(x1, x2), ∀x1, x2 ∈ D.

Here b and c depend only on each other.

Now in more general situations than Theorem 3.3 and Corollary 3.4 we
consider higher dimensional versions of Theorem 1.3. We show that uniform
domains have weak Bloch extension Property.

Theorem 3.5. Let D ⊂ Rn be a proper subdomain. Then the followings are
equivalent.

(i) D is c-uniform.
(ii) There is a constant c such that for f ∈ Bw(D), f : D → Rp,

|f(x1)− f(x2)| ≤ c||f ||Bw(D)jD(x1, x2), ∀x1, x2 ∈ D.

(iii) There is a constant c such that for u ∈ Bw(D), u : D → R,
|u(x1)− u(x2)| ≤ c||u||Bw(D)jD(x1, x2), ∀x1, x2 ∈ D.
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The constants c are not necessarily the same, but they depend only on each
other.

Lemma 3.6. Let D ⊂ Rn be a proper subdomain. Fix x0 ∈ D and define a
function u : D → R by u(x) = kD(x, x0). Then u ∈ Bw(D) and ||u||Bw(D) ≤ 1.

Proof. Let x1, x2 ∈ D and let γ be any curve joining x1 and x2 in D. Fix a
curve β joining x0 and x1 in D. Then

u(x2) ≤
∫
β+γ

ds

dist(x, ∂D)
.

Hence

u(x2) ≤ inf
β

∫
β

ds

dist(x, ∂D)
+

∫
γ

ds

dist(x, ∂D)

and thus

u(x2)− u(x1) ≤
∫
γ

ds

dist(x, ∂D)
.

Reversing the roles of x1 and x2 yields

|u(x1)− u(x2)| ≤
∫
γ

ds

dist(x, ∂D)
.

Therefore
|u(x1)− u(x2)| ≤ kD(x1, x2).

Thus u ∈ Bw(D) and ||u||Bw(D) ≤ 1. □
Lemma 3.6 gives an example of weak Bloch functions. We can also prove

the lemma by using Theorem 3.1 in this paper and the proof of the sufficient
condition in [10, Theorem 3.5], but in that way we do not have ||u||Bw(D) ≤ 1.

Proof of Theorem 3.5. First we show that (i) implies (ii). Suppose that D is
c-uniform. Let f1(x) =

1
||f ||Bw(D)

f(x) for f ∈ Bw(D) and let x1, x2 ∈ D. Then

|f1(x1)− f1(x2)| =
1

||f ||Bw(D)
|f(x1)− f(x2)| ≤ kD(x1, x2).

Thus f1 ∈ Bw(D) and ||f1||Bw(D) ≤ 1. Hence

|f1(x1)− f1(x2)| ≤ c1jD(x1, x2)

for some constant c1 = c1(c) by Corollary 3.4. Then

|f(x1)− f(x2)| ≤ c1||f ||Bw(D)jD(x1, x2).

Next obviously (ii) implies (iii), and we need to show that (iii) implies (i).
Suppose that (iii) holds. Fix x0 ∈ D and define a function u : D → R by
u(x) = kD(x, x0). Then by Lemma 3.6 and (iii)

kD(x, x0) = |u(x)− u(x0)| ≤ cjD(x, x0), ∀x ∈ D,

where c is independent of x0. Thus

kD(x1, x2) ≤ cjD(x1, x2), ∀x1, x2 ∈ D
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and by Theorem 1.1 D is c1-uniform, c1 = c1(c). □

Next higher dimensional versions of Theorem 1.4 was partly given in [12,
Theorem 7.5] as follows.

Theorem 3.7. Suppose that D ⊂ Rn is a proper subdomain and f : D → Rp

is a function. Then D is b-John if there is a constant c such that for each ball
B ⊂ D

|f(x1)− f(x2)| ≤ jD(x1, x2), ∀x1, x2 ∈ B.
implies

|f(x1)− f(x2)| ≤ cj′D(x1, x2), ∀x1, x2 ∈ D.

Here b depend only on c.

We can rewrite Theorem 3.7 by using Theorem 3.1 as follows.

Corollary 3.8. Let D ⊂ Rn be a proper subdomain. Then D is b-John if there
is a constant c such that for f ∈ Bw(D), f : D → Rp, with ||f ||Bw(D) ≤ 1

|f(x1)− f(x2)| ≤ cj′D(x1, x2), ∀x1, x2 ∈ D.

Here c depend only on b.

Now in more general situations than Corollary 3.8 we consider higher di-
mensional versions of Theorem 1.4. We show that inner uniform domains have
weak Bloch extension Property with respect to j′D.

Theorem 3.9. Let D ⊂ Rn be a proper subdomain. Then the followings are
equivalent.

(i) D is c-inner uniform.
(ii) There is a constant c such that for f ∈ Bw(D), f : D → Rp,

|f(x1)− f(x2)| ≤ c||f ||Bw(D)j
′
D(x1, x2), ∀x1, x2 ∈ D.

(iii) There is a constant c such that for u ∈ Bw(D), u : D → R,

|u(x1)− u(x2)| ≤ c||u||Bw(D)j
′
D(x1, x2), ∀x1, x2 ∈ D.

The constants c are not necessarily the same, but they depend only on each
other.

Proof. First we show that (i) implies (ii). Suppose that D ⊂ Rn is c-inner
uniform. Let f ∈ Bw(D), f : D → Rp. Then by Theorem 2.1 there is a
constant c1 = c1(c) such that

|f(x1)− f(x2)| ≤ ||f ||Bw(D)kD(x1, x2) ≤ ||f ||Bw(D)c1j
′
D(x1, x2).

Next obviously (ii) implies (iii), and we need to show that (iii) implies (i).
Suppose that (iii) holds. Fix x0 ∈ D and define a function u : D → R by
u(x) = kD(x, x0). By Lemma 3.6 and (iii)

kD(x, x0) = |u(x)− u(x0)| ≤ c||u||Bw(D)j
′
D(x, x0) ≤ cj′D(x, x0), ∀x ∈ D,
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where c is independent of x0. Therefore

kD(x1, x2) ≤ cj′D(x1, x2), ∀x1, x2 ∈ D

and hence by Theorem 2.1 D is c1-inner uniform, c1 = c1(c). □
Remark 3.10. Since the class of inner uniform domains is actually equal to the
class of uniformly John domains [14, Theorem 3.5], an inner uniform domain
satisfies the necessary condition of Theorem 3.5 in [10]. Then by Theorem 3.1
in this paper we can also get (ii) of Theorem 3.9.
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