References
- Z. Balogh and A. Volberg, Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications, Rev. Mat. Iberoamericana 12 (1996), no. 2, 299-336.
- Z. Balogh and A. Volberg, Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat. 34 (1996), no. 1, 21-49. https://doi.org/10.1007/BF02559505
- M. Bonk, J. Heinonen, and P. Koskela, Uniformizing Gromov hyperbolic spaces, Asteroque 270 (2001), viii+99 pp.
- O. J. Broch, Geometry of John disks, Norwegian University of Science and Technology Doctoral Thesis, 2005.
- F. W. Gehring, K. Hag, and O. Martio, Quasihyperbolic geodesics in John domains, Math. Scand. 65 (1989), no. 1, 75-92. https://doi.org/10.7146/math.scand.a-12267
- F. W. Gehring and W. F. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353-361.
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50-74. https://doi.org/10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformal homogeneous domains, J. Analyse Math. 30 (1976), 172-199. https://doi.org/10.1007/BF02786713
- J. Heinonen and S. Rohde, The Gehring and Hayman inequality for quasihyperbolic geodesics, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 3, 393-405. https://doi.org/10.1017/S0305004100071681
-
K. Kim, The quasihyperbolic metric and analogues of the Hardy-Littlewood property for
$\alpha$ = 0 in uniformly John domains, Bull. Korean Math. Soc. 43 (2006), no. 2, 395-410. https://doi.org/10.4134/BKMS.2006.43.2.395 - K. Kim and N. Langmeyer, Harmonic Measure and Hyperbolic distance in John disks, Math. Scand. 83 (1998), no. 2, 283-299. https://doi.org/10.7146/math.scand.a-13857
- N. Langmeyer, The quasihyperbolic metric, growth and John domains, University of Michigan Ph.D. Thesis, 1996.
- N. Langmeyer, The quasihyperbolic metric, growth and John domains, Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 205-224.
- J. Vaisala, Relatively and inner uniform domains, Conform. Geom. Dyn. 2 (1998), 56-88. https://doi.org/10.1090/S1088-4173-98-00022-8
Cited by
- WEAK BLOCH FUNCTIONS, ∅-UNIFORM AND ∅-JOHN DOMAINS vol.19, pp.4, 2012, https://doi.org/10.7468/jksmeb.2012.19.4.423
- INNER UNIFORM DOMAINS AND THE APOLLONIAN INNER METRIC vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.1873