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INNER UNIFORM DOMAINS AND THE APOLLONIAN

INNER METRIC

Yaxiang Li and Xiantao Wang

Abstract. In this paper, we characterize inner uniform domains in R
n

in terms of Apollonian inner metric and the metric j′
D

when D are Apol-
lonian. As an application, a new characterization for A-uniform domains
is obtained.

1. Introduction and main results

Throughout the paper, we assume that D is a proper subdomain of the
Euclidean n-space R

n, n ≥ 2, [x, y] denotes the closed segment between x and
y, and Bn(x, r) stands for the open ball centered at x with radius r > 0, i.e.,
Bn(x, r) = {y ∈ R

n : |y − x| < r}. In particular, we use B
n to denote the unit

ball Bn(0, 1). For x, y ∈ D, the Apollonian distance is defined by

αD(x, y) = sup
a,b∈∂D

{
log

|a− x||b − y|

|a− y||b− x|

}
,

where ∂D means the boundary of D. If one of a, b equals to ∞, we understand

that |∞−x|
|∞−y| = 1. We note that this metric is invariant under Möbius transfor-

mations and equals the hyperbolic distance in balls and half spaces (cf. [2]).
It is in fact a metric if and only if the complement of D is not contained in a
hyperplane as was noted in [2, Theorem 1.1] (see also [9]). In this paper, these
domains are called to be Apollonian. This metric was introduced in [2] and
considered in [1, 5, 8, 9, 10, 11, 12, 19, 20].

Let γ : [0, 1] → D be a path, i.e., a continuous function. If d is a metric in
D, then the d-length of γ is defined by

d(γ) = sup
{ k−1∑

i=0

d(γ(ti), γ(ti+1))
}
,
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where the supremum is taken over all k < ∞ and all sequences {ti} satisfying
0 = t0 < t1 < · · · < tk = 1. All the paths in this paper are assumed to be
rectifiable, that is, they have the finite Euclidean arc length. The inner metric
of d is defined by the formula

d̃(x, y) = inf
γ
{d(γ)},

where the infimum is taken over all paths connecting x and y inD. Particularly,
we use α̃D to denote the inner metric of the Apollonian metric αD and call it

the Apollonian inner metric. Also we use λD(x, y) to denote d̃(x, y) when d(γ)
is the Euclidean arc length.

In [8, Theorem 1.2], Hästö proved that α̃D is a metric if and only if the
complement of D is not contained in an (n− 2)-dimensional hyperplane in R

n.
Further, in [8], Hästö showed:

Theorem A ([8, Theorem 1.5]). Let D be Apollonian. Then for x, y ∈ D,

there exists a path γ in D connecting x and y such that

αD(γ) = α̃D(x, y).

And further, in [13], the authors got the following.

Theorem B ([13, Lemma 2.4]). Let x, y ∈ D and let γ ⊂ D be a path such

that α̃D(x, y) = αD(γ). Then for each z, w ∈ γ, we have

α̃D(z, w) = αD(γ[z, w]),

where γ[z, w] denotes the part of γ between z and w.

Definition 1. A domain D is called inner c-uniform provided there exists a
positive constant c such that each pair of points z1, z2 in D can be joined by a
rectifiable arc γ in D satisfying (cf. [24])

(1) min{ℓ(γ[z1, z]) ℓ(γ[z2, z])} ≤ c dD(z) for all z ∈ γ; and
(2) ℓ(γ) ≤ c λD(z1, z2),

where dD(z) denotes the distance from z to the boundary ∂D of D.
If λD(z1, z2) is replaced by |z1 − z2| in Definition 1, then D is said to be

c-uniform.

Obviously, uniformity implies inner uniformity.

Definition 2. A domain D is called to be a c-John domain provided there
exists a positive constant c such that each pair of points z1, z2 in D can be
joined by a rectifiable arc γ in D satisfying (cf. [18])

min{diam(γ[z1, w]), diam(γ[w, z2])} ≤ cdD(w).

In [24], Väisälä showed the following two theorems.

Theorem C ([24, Theorem 3.3 and Theorem 3.4]). Suppose that D ⊂ R
n is

an inner c-uniform domain. Then for x, y ∈ D, we have

λD(x, y) ≤ ν1̺D(x, y),
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where ν1 ≥ 6c is a constant depending on c and n, and ̺D(x, y) denotes the

inner diameter metric, defined by

̺D(x, y) = inf
γ
{diam(γ)}

over all arcs γ joining x and y in D.

Theorem D ([24, Theorem 3.11]). For a domain D ⊂ R
n, the following

conditions are quantitatively equivalent:

(1) D is inner c-uniform.

(2) Each pair of points z1, z2 ∈ D can be joined by an arc γ such that for

w ∈ γ,

min{diam(γ[z1, w]), diam(γ[z2, w])} ≤ ν2dD(w) and diam(γ) ≤ ν2̺D(z1, z2),

where the constants c and ν2 depend on each other and n.

Let D be a domain and x, y ∈ D. We write

jD(x, y) = log
(
1 +

|x− y|

min{dD(x), dD(y)}

)
.

Kim [14] (see also [24]) introduced the following version of the j-metric:

j′D(x, y) = log
(
1 +

̺D(x, y)

min{dD(x), dD(y)}

)
,

and the quasihyperbolic metric [7] is defined by

kD(x, y) = inf
γ

∫

γ

|dz|

dD(z)
,

where the infimum is taken over all paths γ joining x and y in D.
We easily know from the proof of [22, Lemma 2.2] that for x, y ∈ D,

jD(x, y) ≤ j′D(x, y) ≤ kD(x, y).(1.1)

Further, we have:

Theorem E. For x, y ∈ D, the following hold true.

(1) ([2, Corollary 3.2])
∣∣ log dD(x)

dD(y)

∣∣ ≤ αD(x, y) ≤ 2jD(x, y);

(2) ([9, Lemma 5.3]) j̃D(x, y) = kD(x, y);
(3) ([9, Corollary 5.4]) α̃D(x, y) ≤ 2kD(x, y).

In [6], Gehring and Osgood got a characterization of uniform domains in
terms of kD and jD.

Theorem F ([6, Corollary 1]). A domain D is µ-uniform if and only if there

exists a constant µ1 such that

kD(z1, z2) ≤ µ1jD(z1, z2)

for all z1, z2 ∈ D, where the constants µ and µ1 depend only on each other.
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As a matter of fact, the above inequality appearing in [6] in a form with an
additive constant on the right hand side: it was shown by Vuorinen [25, 2.50]
that the additive constant can be chosen to be 0. Moreover, in [13], the authors
proved the following.

Theorem G ([13, Theorem 1.2]). A domain D ⊂ R
n is µ-uniform if and only

if there exists a constant µ2 such that α̃D(x, y) ≤ µ2jD(x, y) for any x, y ∈ D,
where the constants µ and µ2 depend only on each other.

See [3, 4, 6, 13, 15, 16, 17, 24, 21, 23] for more details on uniform domains
and inner uniform domains.

By Theorem G, one may ask that if we can characterize inner uniform do-
mains in terms of α̃D and j′D. The main aim of this paper is to consider
this problem. Our result shows that the answer to this problem is affirmative.
Combining with [15, Theorem 2.1] and Theorem D, we state our result in the
following form.

Theorem 1. Let D be a proper subdomain of Rn. If D is Apollonian, then the

followings are quantitatively equivalent.

(1) D is an inner c-uniform domain;
(2) There exists a constant c1 such that

kD(x, y) ≤ c1j
′
D(x, y) ∀x, y ∈ D;

(3) There exists a constant c2 such that

α̃D(x, y) ≤ c2j
′
D(x, y) ∀x, y ∈ D;(1.2)

(4) Each pair of points x, y ∈ D can be joined by an arc γ such that for

w ∈ γ, min{diam(γ[x,w]), diam(γ[y, w])} ≤ c3dD(w) and diam(γ) ≤
c3̺D(x, y),

where c, c1, c2 and c3 are constants greater than 1, and depend on each other

and n.

In [9], Hästö proved the following result.

Theorem H ([9, Proposition 6.6]). Let D ⊂ R
n be a domain. The following

conditions are quantitatively equivalent:

(1) D is A-uniform with coefficient K, that is, there exist some constant

K such that for x, y ∈ D, kD(x, y) ≤ KαD(x, y);
(2) D is µ-uniform and has the comparison property with some constant

L;
(3) D is µ3-quasi-isotropic and α̃D ≤ µ4αD,

where the constants K, L, µ, µ3 and µ4 depend only on each other.

Here we say that a domain D ⊂ R
n has the comparison property if there

exists a constant L such that

jD/L ≤ αD ≤ 2jD,
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and D is µ3-quasi-isotropic if

lim sup
r→0

sup{αD(x, z) : |x− z| = r}

inf{αD(x, y) : |x− y| = r}
≤ µ3

for every x ∈ D (see [9]).
As an application of Theorem 1, we get a new characterization for A-uniform

domains.

Corollary 1. Let D ⊂ R
n be an Apollonian domain. The following conditions

are quantitatively equivalent:

(1) D is A-uniform with coefficient K;
(2) D is c-inner uniform and j′D(x, y) ≤ µ5αD(x, y) for all x, y ∈ D,

where the constants c, K and µ5 depend on each other and n.

In the next section, we will prove Theorem 1 and Corollary 1.

2. Proofs of Theorem 1 and Corollary 1

2.1. Proof of Theorem 1

The implication (1) ⇒ (2) follows from [15, Theorem 2.1] and Theorem C,
and Theorem E shows that (2) ⇒ (3) is true. The implication (4)⇒ (1) follows
from Theorem D. Hence to finish the proof of Theorem 1, it remains only one
implication (3) ⇒ (4) to be checked.

Suppose that the assertion (3) in the theorem holds. To prove the truth of
the assertion of (4) in the theorem, we let x, y ∈ D. Without loss of generality,
we assume that dD(x) ≤ dD(y). We consider the case where |x − y| < dD(x)
and the case where |x− y| ≥ dD(x), separately.

Case 1. |x− y| < dD(x).

Let γ = [x, y] be the Euclidean line segment joining x and y. Clearly, γ ⊂ D,

diam(γ) = |x− y| = ̺D(x, y)

and

min{diam(γ[x,w]), diam(γ[y, w])} ≤ dD(w)

for w ∈ γ. Thus the assertion (4) in the theorem is true in this case.

Case 2. |x− y| ≥ dD(x).

By Theorem A there exists a path γ ⊂ D connecting x and y such that

α̃D(x, y) = αD(γ).

By compactness we see that there is a point z0 in γ which is the first point
along the direction from x to y satisfying

dD(z0) = sup
w∈γ

{dD(w)}.
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Let m ≥ 0 be the integer such that

2mdD(x) ≤ dD(z0) < 2m+1dD(x),

and let x0 be the first point of γ[x, z0] from x to z0 with

dD(x0) = 2mdD(x).(2.1)

Then we have

dD(x0) ≤ dD(z0) < 2dD(x0).(2.2)

Let x1 = x, and let x2, . . . , xm+1 be the points such that for each i ∈ {2, . . . ,m+
1}, xi denotes the first point in γ[x, z0] along the direction from x to z0 satis-
fying

dD(xi) = 2i−1dD(x1).

Apparently, xm+1 = x0. If x0 6= z0, we denote z0 by xm+2. By the choice of
xi, we know that for each i ∈ {1, 2, . . . ,m},

dD(xi+1) = 2dD(xi),(2.3)

and so

̺D(xi, xi+1) ≥ dD(xi+1)− dD(xi) = dD(xi).(2.4)

For each i ∈ {1, 2, . . . ,m} and w ∈ γ[xi, xi+1], it easily follows that

dD(w) ≤ dD(xi+1) = 2dD(xi).(2.5)

Let w0 be the first point of γ along the direction from y to x satisfying

dD(w0) = sup
w∈γ

{dD(w)}.

Obviously, dD(w0) = dD(z0). It is possible that w0 = z0. A similar argument
as above shows that there are points {yj}

s+1
j=1 in γ[y, w0] such that for each

j ∈ {1, . . . , s+1}, yj denotes the first point in γ[y, w0] along the direction from
y to w0 satisfying

dD(yj) = 2j−1dD(y1),

where y1 = y and dD(ys+1) = 2sdD(y1). We also use y0 to denote ys+1. If
y0 6= w0, we use ys+2 to denote w0.

Lemma 1. For each i ∈ {1, 2, . . . ,m}, we have

(1) diam(γ[xi, xi+1]) ≤ b1̺D(xi, xi+1) with b1 = 24c′2 and c′2 = [c2] + 1.
Here and in the following, [·] always denotes the greatest integer part;

(2) ̺D(xi, xi+1) ≤ b2dD(xi) with b2 = (1 + b1)
2;

(3) dD(xi) ≤ b3dD(w) for all w ∈ γ with b3 = (1 + b2)
c2

2 ,

where c2 is the same constant as in the inequality (1.2).
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Proof. We now prove the first assertion in the lemma. Suppose on the contrary
that there is some i ∈ {1, . . . ,m} satisfying

diam(γ[xi, xi+1]) > b1̺D(xi, xi+1).

Let ui,1 = xi, and take the points ui,2, ui,3, . . . , ui,c′
2
+1 in γ such that for each

t ∈ {2, . . . , c′2 + 1}, ui,t is the first point of γ from xi to xi+1 satisfying

|xi − ui,t| = 6(t− 1)̺D(xi, xi+1).

Then for each t ∈ {1, . . . , c′2}, we have

|ui,t − ui,t+1| ≥ |xi − ui,t+1| − |ui,t − xi| ≥ 6̺D(xi, xi+1).(2.6)

Let p ∈ ∂D be such that dD(ui,t+1) = |ui,t+1 − p|. Then (2.4), (2.5) and (2.6)
yield

|ui,t − p| ≥ |ui,t − ui,t+1| − dD(ui,t+1)(2.7)

≥ 6̺D(xi, xi+1)− 2dD(xi)

≥ 2̺D(xi, xi+1) + 2dD(xi).

Similarly, for q ∈ ∂D with dD(ui,t) = |ui,t − q|, we get

|ui,t+1 − q| ≥ 2̺D(xi, xi+1) + 2dD(xi).(2.8)

Thus we infer from (2.5), (2.7) and (2.8) that

αD(ui,t, ui,t+1) ≥ log

(
|ui,t − p|

dD(ui,t+1)

|ui,t+1 − q|

dD(ui,t)

)
≥ 2 log

(
1 +

̺D(xi, xi+1)

dD(xi)

)
,

which together with Theorem B show that

α̃D(xi, xi+1) = αD(γ[xi, xi+1])

≥

c′
2∑

t=1

αD(ui,t, ui,t+1)

≥ 2c′2 log

(
1 +

̺D(xi, xi+1)

dD(xi)

)

≥ 2c2 log

(
1 +

̺D(xi, xi+1)

dD(xi)

)

= 2c2j
′
D(xi, xi+1),

which contradicts with (1.2). Hence (1) is true.
Then we come to prove the second assertion. Suppose on the contrary that

there is some i ∈ {1, 2, . . . ,m} satisfying

̺D(xi, xi+1) > b2dD(xi).(2.9)

Obviously, there exists some point v ∈ γ[xi, xi+1] such that |xi − v| ≥
1
2̺D(xi, xi+1). We let vi,1 = xi, and let vi,2, . . . , vi, b1

12
+1

be the points in γ
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such that for each h ∈ {2, . . . , b1
12 + 1}, vi,h is the first point of γ from xi to

xi+1 satisfying

|xi − vi,h| =
6(h− 1)

b1
̺D(xi, xi+1).

Then

(2.10) |vi,h − vi,h+1| ≥ |vi,h+1 − xi| − |vi,h − xi| ≥
6

b1
̺D(xi, xi+1).

Let p ∈ ∂D satisfy dD(vi,h+1) = |vi,h+1 − p|. Then it follows from (2.4), (2.5),
(2.9) and (2.10) that

|vi,h − p| ≥ |vi,h − vi,h+1| − dD(vi,h+1)(2.11)

≥
6

b1
̺D(xi, xi+1)− 2dD(xi)

>
2

b1
̺D(xi, xi+1) + 2dD(xi).

Similarly, for q ∈ ∂D with dD(vi,h) = |vi,h − q|, we know

|vi,h+1 − q| ≥
2

b1
̺D(xi, xi+1) + 2dD(xi).(2.12)

Thus we infer from (2.5), (2.9), (2.11) and (2.12) that

αD(vi,h, vi,h+1) ≥ log

(
|vi,h − p|

dD(vi,h+1)

|vi,h+1 − q|

dD(vi,h)

)

≥ 2 log

(
1 +

̺D(xi, xi+1)

b1dD(xi)

)

>
12c2
b1

log

(
1 +

̺D(xi, xi+1)

dD(xi)

)
.

Whence Theorem B yields

α̃D(xi, xi+1) = αD(γ[xi, xi+1])

≥

b1

12∑

h=1

αD(vi,h, vi,h+1)

> c2 log

(
1 +

̺D(xi, xi+1)

dD(xi)

)

= c2j
′
D(xi, xi+1),

which is the desired contradiction.
To finish the proof of Lemma 1, it remains to check (3). Let w ∈ γ. Then

(2) in the lemma, (1.2), Theorems B and E lead to

2 log
dD(xi)

dD(w)
< αD(xi, w) + αD(w, xi+1)

≤ αD(γ[xi, xi+1])
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= α̃D(xi, xi+1)

≤ c2 log

(
1 +

̺D(xi, xi+1)

dD(xi)

)

≤ c2 log(1 + b2),

which shows that

dD(xi) ≤ (1 + b2)
c2

2 dD(w),

which shows that (3) is true by taking b3 = (1 + b2)
c2

2 . Hence the proof of
Lemma 1 is complete. �

Similarly, we know that:

Lemma 2. For each j ∈ {1, . . . , s}, we have

(1) diam(γ[yj, yj+1]) ≤ b1̺D(yj , yj+1);
(2) ̺D(yj , yj+1) ≤ b2dD(yj);
(3) dD(yj) ≤ b3dD(w) for all w ∈ γ.

Suppose x0 6= y0. Then:

Lemma 3. For w ∈ γ[x0, y0], we have

dD(x0) ≤ b23dD(w) and diam(γ[x0, y0]) ≤ b4dD(w),

where b4 = b1b2b
2
3.

Proof. We note by (2.2) that

1

2
dD(y0) < dD(x0) < 2dD(y0),(2.13)

and for w ∈ γ[x0, y0], we have

dD(w) < dD(z0) < 2dD(x0).(2.14)

We prove this lemma by considering the case where ̺D(x0, y0) ≥ dD(x0) and
the case where ̺D(x0, y0) < dD(x0), separately.

Suppose first that ̺D(x0, y0) ≥ dD(x0). Then by (2.13), (2.14) and a similar
argument as in the proof of Lemma 1, we get for each w ∈ γ[x0, y0],

dD(x0) ≤ b23dD(w)(2.15)

and

diam(γ[x0, y0]) ≤ b4dD(w),(2.16)

where b4 = b1b2b
2
3.

Suppose next that ̺D(x0, y0) < dD(x0). In this case, we need the following
claim.

Claim 1. For w ∈ γ[x0, y0], we have |w − x0| ≤ (3c2 + 1)dD(x0).
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Obviously, to prove this claim, it suffices to consider the case |x0 − w| ≥
2dD(x0). Let z ∈ ∂D satisfy |x0 − z| = dD(x0). Then it follows from (1.2),
(2.13), Theorems B and E that

log

(
|w − x0|

dD(x0)
− 1

)
≤ log

|z − w|

dD(x0)
(2.17)

≤ αD(x0, w)

≤ αD(γ[x0, y0])

= α̃D(x0, y0)

≤ c2 log
(
1 +

̺D(x0, y0)

min{dD(x0), dD(y0)}

)

≤ c2 log 3,

from which the claim easily follows.

By Claim 1, we get

diam(γ[x0, y0]) ≤ 2(3c2 + 1)dD(x0).(2.18)

Moreover, by Theorem E and a similar argument as in (2.17), we also have

log
dD(x0)

dD(w)
≤ αD(x0, w) ≤ c2 log 3,

and so

dD(x0) ≤ 3c2dD(w),(2.19)

which together with (2.18) show that

diam(γ[x0, y0]) ≤ 2(3c2 + 1)2dD(w) ≤ b4dD(w).(2.20)

The inequalities (2.15), (2.16), (2.19) and (2.20) imply that the lemma is true.
�

Now we come to prove that the first part of (4) in Theorem 1 holds with
constant 2b4, i.e., for w ∈ γ,

min{diam(γ[x,w]), diam(γ[y, w])} ≤ 2b4dD(w).(2.21)

Let w ∈ γ. We divide the discussions into three cases.

Case 3. w ∈ γ[x, x0].

Clearly, there exists an integer k ∈ {1, 2, . . . ,m} such that w ∈ γ[xk, xk+1].
By Lemma 1 and (2.3) we have

diam(γ[x,w]) ≤

k∑

i=1

diam(γ[xi, xi+1]) ≤ b1b2

k∑

i=1

dD(xi)(2.22)

≤ 2b1b2dD(xk) ≤ 2b1b2b3dD(w) < b4dD(w).

Case 4. w ∈ γ[y, y0].
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By Lemma 2, we see from a similar argument as in the proof of Case 3 that

diam(γ[y, w]) < b4dD(w).(2.23)

Case 5. If w ∈ γ[x0, y0].

It follows from Lemmas 1 and 3 that

diam(γ[x,w]) ≤

m∑

i=1

diam(γ[xi, xi+1]) + diam(γ[x0, y0])(2.24)

≤ b1b2

m∑

i=1

dD(xi) + b4dD(w)

≤ b1b2dD(xm+1) + b4dD(w)

≤ 2b4dD(w).

The proof for (2.21) easily follows from the combination of (2.22), (2.23) and
(2.24).

Next we prove the second part of (4) in Theorem 1 with constant b6 =
2b5+2b4, where b5 = c2 log2(8b4 + 1) + 1, i.e.,

diam(γ[x, y]) ≤ b6̺D(x, y).(2.25)

We first prove a lemma.

Lemma 4. ̺D(x, y) ≥ 2m−b5dD(x).

Proof. If m ≤ b5, then it is obvious from the assumption “|x − y| ≥ dD(x)”.
So we assume that m > b5. In this case, we prove the lemma by contradiction.
Suppose that

̺D(x, y) < 2m−b5dD(x).(2.26)

Then

dD(y) ≤ ̺D(x, y) + dD(x)(2.27)

< (2m−b5 + 1)dD(x)

≤
2m

(8b4 + 1)c2
dD(x)

<
2m

(8b4 + 1)
c2

2

dD(x).

By (2.1) and (2.13) we have

dD(y0) ≥
1

2
dD(x0) = 2m−1dD(x) >

2m

(8b4 + 1)
c2

2

dD(x),(2.28)

then we obtain from (2.27), (2.28) and the easy fact

2m

(8b4 + 1)
c2

2

= 2m−
c2

2
log

2
(8b4+1) > 1
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that there exist w1 ∈ γ[x, x0] and w2 ∈ γ[y, y0] such that

dD(w1) = dD(w2) =
2m

(8b4 + 1)
c2

2

dD(x).(2.29)

On one hand, we obtain from (1.2), (2.1), (2.29), Theorems B and E that

c2 log

(
1 +

̺D(w1, w2)

dD(w1)

)
≥ α̃D(w1, w2)

= αD(γ[w1, w2])

≥ αD(w1, xm+1) + αD(xm+1, w2)

≥ 2 log
dD(xm+1)

dD(w1)

≥ c2 log(1 + 8b4),

which imply that

̺D(w1, w2) ≥ 8b4dD(w1).(2.30)

On the other hand, by (2.22), (2.23), (2.26) and (2.29) we obtain

̺D(w1, w2) ≤ ̺D(w1, x) + ̺D(x, y) + ̺D(y, w2)

≤ diam(γ[x,w1]) + ̺D(x, y) + diam(γ[y, w2])

< 2b4dD(w1) + ̺D(x, y)

≤ (2b4 +
2m−b5(8b4 + 1)

c2

2

2m
)dD(w1)

< (2b4 + 1)dD(w1),

which is contradict with (2.30). Hence the proof of the lemma is complete. �

Now we are ready to conclude the proof of (2.25). It follows from (2.1),
(2.13), (2.22), (2.23), (2.28), Lemmas 3 and 4 that

diam(γ[x, y]) ≤ diam(γ[x, x0]) + diam(γ[x0, y0]) + diam(γ[y0, y])

≤ 4b4dD(xm+1)

= 2m+2b4dD(x)

≤ 2b5+2b4̺D(x, y).

Hence the proof of (4) of Theorem 1 is complete by taking c3 = 2b5+2b4.

2.2. The proof of Corollary 1

(1)⇒ (2). Suppose (1) holds. Then by Theorem H, we see that D is a
µ-uniform, so it is obvious inner uniform.

For the second part of (2), we can obtain easily from (1.1) and the definition
of A-uniform (see Theorem H). Hence (2) is true.
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(2) ⇒ (1). Suppose (2) holds. Then by Theorem 1, we know that for all
x, y ∈ D,

kD(x, y) ≤ c1j
′
D(x, y) ≤ c1µ5αD(x, y),

which shows that D is A-uniform with coefficient K = c1µ5.
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[20] P. Seittenranta, Möbius-invariant metrics, Math. Proc. Cambridge Philos. Soc. 125

(1999), no. 3, 511–533.



1886 YAXIANG LI AND XIANTAO WANG
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