• Title/Summary/Keyword: uniform central limit theorem

Search Result 14, Processing Time 0.026 seconds

A Uniform CLT for Continuous Martingales

  • Bae, Jong-Sig;Shlomo Leventatl
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.225-231
    • /
    • 1995
  • An eventual uniform equicontinuity condition is investigated in the context of the uniform central limit theorem (UCLT) for continuous martingales. We assume the usual intergrability condition on metric entropy. We establish an exponential inequality for a martingales. Then we use the chaining lemma of Pollard (1984) to prove an eventual uniform equicontinuity which is a sufficient condition of UCLT. We apply the result to approximate a stochastic integral with respect to a martingale to that of a Brownian motion.

  • PDF

A View on the Validity of Central Limit Theorem: An Empirical Study Using Random Samples from Uniform Distribution

  • Lee, Chanmi;Kim, Seungah;Jeong, Jaesik
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.539-559
    • /
    • 2014
  • We derive the exact distribution of summation for random samples from uniform distribution and then compare the exact distribution with the approximated normal distribution obtained by the central limit theorem. To check the similarity between two distributions, we consider five existing normality tests based on the difference between the target normal distribution and empirical distribution: Anderson-Darling test, Kolmogorov-Smirnov test, Cramer-von Mises test, Shapiro-Wilk test and Shaprio-Francia test. For the purpose of comparison, those normality tests are applied to the simulated data. It can sometimes be difficult to derive an exact distribution. Thus, we try two different transformations to find out which transform is easier to get the exact distribution in terms of calculation complexity. We compare two transformations and comment on the advantages and disadvantages for each transformation.

A Note on the Invariance Principle for Associated Sequences

  • Kim, Tae-Sung;Han, Kwang-Hee
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.353-359
    • /
    • 1993
  • In this note we consider other type of tightness than that of Birkel (1988) and prove an invariance principle for nonstationary associated processes by an application of the central limit theorem of Cox and Grimmett (1984), thus avoiding the argument of uniform integrability. This result is an extension to the nonstationary case of an invariance priciple of Newman and Wright (1981) as well as an improvement of the central limit theorem of Cox and Grimmett (1984).

  • PDF

LIMIT THEOREMS FOR HAWKES PROCESSES WITH UNIFORM IMMIGRANTS

  • Seol, Youngsoo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.935-946
    • /
    • 2019
  • Hawkes process is a self-exciting simple point process with clustering effect whose jump rate depends on its entire past history. We consider Hawkes processes with uniform immigrants which is a special case of the Hawkes processes with renewal immigrants. We study the limit theorems for Hawkes processes with uniform immigrants. In particular, we obtain a law of large number, a central limit theorem, and a large deviation principle.

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF

THE SECOND CENTRAL LIMIT THEOREM FOR MARTINGALE DIFFERENCE ARRAYS

  • Bae, Jongsig;Jun, Doobae;Levental, Shlomo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.317-328
    • /
    • 2014
  • In Bae et al. [2], we have considered the uniform CLT for the martingale difference arrays under the uniformly integrable entropy. In this paper, we prove the same problem under the bracketing entropy condition. The proofs are based on Freedman inequality combined with a chaining argument that utilizes majorizing measures. The results of present paper generalize those for a sequence of stationary martingale differences. The results also generalize independent problems.

Asymptotic Theory for Multi-Dimensional Mode Estimator

  • Kim, Jean-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.251-269
    • /
    • 1994
  • In this paper we extend Kim and Pollard's cube root asymptotics to other rates of convergence, to establish an asymptotic theory for a multidimensional mode estimator based on uniform kernel with shrinking bandwidths. We obtain rates of convergence depending on shrinking rates of bandwidth and non-normal limit distributions. Optimal decreasing rates of bandwidth are discussed.

  • PDF

UNIFORM ASYMPTOTICS IN THE EMPIRICAL MEAN RESIDUAL LIFE PROCESS

  • Bae, Jong-Sic;Kim, Sung-Yeun
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.225-239
    • /
    • 2006
  • In [5], Csorgo and Zitikis exposed the strong $uniform-over-[0,\;{\infty}]$ consistency, and weak $uniform-over-[0,\;{\infty}]$ approximation of the empirical mean residual life process by employing weight functions. We carry on the uniform asymptotic behaviors of the empirical mean residual life process over the whole positive half line by representing the process as an integral form. We compare our results with those of Yang [15], Hall and Wellner [8], and Csorgo and Zitikis [5].

THE UNIFORM CLT FOR MARTINGALE DIFFERENCE ARRAYS UNDER THE UNIFORMLY INTEGRABLE ENTROPY

  • Bae, Jong-Sig;Jun, Doo-Bae;Levental, Shlomo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • In this paper we consider the uniform central limit theorem for a martingale-difference array of a function-indexed stochastic process under the uniformly integrable entropy condition. We prove a maximal inequality for martingale-difference arrays of process indexed by a class of measurable functions by a method as Ziegler [19] did for triangular arrays of row wise independent process. The main tools are the Freedman inequality for the martingale-difference and a sub-Gaussian inequality based on the restricted chaining. The results of present paper generalizes those of Ziegler [19] and other results of independent problems. The results also generalizes those of Bae and Choi [3] to martingale-difference array of a function-indexed stochastic process. Finally, an application to classes of functions changing with n is given.

The Design and Implementation to Teach Sampling Distributions with the Statistical Inferences (통계적 추론에서의 표집분포 개념 지도를 위한 시뮬레이션 소프트웨어 설계 및 구현)

  • Lee, Young-Ha;Lee, Eun-Ho
    • School Mathematics
    • /
    • v.12 no.3
    • /
    • pp.273-299
    • /
    • 2010
  • The purpose of the study is designing and implementing 'Sampling Distributions Simulation' to help students to understand concepts of sampling distributions. This computer simulation is developed to help students understand sampling distributions more easily. 'Sampling Distributions Simulation' consists of 4 sessions. 'The first session - Confidence level and confidence intervals - includes checking if the intended confidence level is actually achieved by the real relative frequency for the obtained sample confidence intervals containing population mean. This will give the students clearer idea about confidence level and confidence intervals in addition to the role of sampling distribution of the sample means among those. 'The second session - Sampling Distributions - helps understand sampling distribution of the sample means, through the simulation method to make comparison between the histogram of sampling distributions and that of the population. The third session - The Central Limit Theorem - includes calculating the means of the samples taken from a population which follows a uniform distribution or follows a Bernoulli distribution and then making the histograms of those means. This will provides comprehension of the central limit theorem, which mentions about the sampling distribution of the sample means when the sample size is very large. The forth session - the normal approximation to the binomial distribution - helps understand the normal approximation to the binomial distribution as an alternative version of central limit theorem. With the practical usage of the shareware 'Sampling Distributions Simulation', we expect students to have a new vision on the sampling distribution and to get more emphasis on it. With the sound understandings on the sampling distributions, more accurate and profound statistical inferences are expected. And the role of the sampling distribution in the inferences should be more deeply appreciated.

  • PDF