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Abstract
We derive the exact distribution of summation for random samples from uniform distribution and then com-

pare the exact distribution with the approximated normal distribution obtained by the central limit theorem. To
check the similarity between two distributions, we consider five existing normality tests based on the difference
between the target normal distribution and empirical distribution: Anderson-Darling test, Kolmogorov-Smirnov
test, Cramer-von Mises test, Shapiro-Wilk test and Shaprio-Francia test. For the purpose of comparison, those
normality tests are applied to the simulated data.

It can sometimes be difficult to derive an exact distribution. Thus, we try two different transformations to
find out which transform is easier to get the exact distribution in terms of calculation complexity. We compare
two transformations and comment on the advantages and disadvantages for each transformation.

Keywords: Central limit theorem, uniform distribution, normal distribution, Anderson-Darling test,
Kolmogorov-Smirnov test, Cramer-von Mises test, Shapiro-Wilk test and Shapiro-Francia test.

1. Introduction

Many distribution related theories have been developed in the field of statistics. Given data, it is very
important to find useful information from data for statistical inference such as parameter estimation.
Researchers are often interested in the distributional characteristics of the data like the center of the
distribution. To obtain such information, we need to know the distribution of sample mean because
the sample mean is a good estimator of the population mean in consideration of many theoretical
properties. However, for some distribution, it is little bit complicated to derive the exact distribution
of the sample mean if the size of the data is large (say, 8 or 10). To avoid such complicated calculation
a central limit theorem(CLT) can be used to approximate the exact distribution. Such approximation
is closer to the exact distribution with the rate of

√
n as the sample size(n) increases.

This paper validates the central limit theorem using random samples from uniform distribution.
Our goal is to answer the following question: How big is big enough in terms of sample size so that
we can use the approximated normal distribution instead of the exact distribution of summation of
random samples without any problem? To answer the question, we consider uniform distribution and
derive the exact distribution of the summation of random samples for different sample sizes of up to
8. We then compare the exact distribution with the approximated distribution obtained by CLT. We
use five existing normality tests to check the similarity between two distributions. The novelty of this
paper is that we provide the derivation of the exact distribution of the summation of random samples.
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2. Method

We provide five normality tests. Also, we provide the definition of CLT: Let X1, . . . , Xn be random
samples from a distribution with mean µ and variance σ2. Then

X̄ − µ
σ√

n

→ N(0, 1) as n→ ∞.

For education purpose, we provide two wonderful references for CLT (Dinov et al., 2008; Micheaux
and Liquet, 2009).

2.1. Normality test

To date, about 40 normality test methods have been developed (Dufour et al., 1998) since the seminal
paper by Pearson who worked on the skewness and kurtosis coefficients (Althouse et al., 1998). Those
tests for normality differ in two ways: (1) the characteristics of the normal distribution the tests focus
on (for example, skewness or kurtosis) (2) distance measure the tests use (for example, absolute
difference or squared difference between theoretical distribution function and empirical distribution
function). Here we focus on the five selected tests: Kolmogorov-Smirnov test, Anderson-Darling
test, Cramer-von Mises test, Shapiro-Wilk test and Shapiro-Francia test. To test for normality, those
methods use the distance between F (normal distribution) and Fn(empirical distribution) which plays
a key role to test for the equality of two distributions. We briefly introduce the five tests and refer the
reader to the original papers for more details.
Kolmogorov-Smirnov(KS) test: The empirical distribution function Fn for n iid observations X′i s is
defined as

Fn(x) =
1
n

n∑
i=1

IXi≤x

where IXi≤x is the indicator function. Suppose that the F is the target normal distribution. Then the
Kolmogorov-Smirnov statistic is defined as

TKS = supx|Fn(x) − F(x)|

where supx is the supremum of the set of distances. The null hypothesis that the samples come from
the normal distribution is rejected if the TKS is larger than the tabulated values calculated by Nikolai
Vasilyevich Smirnov in 1948 (Smirnov, 1948). Note that Glivenko-Cantelli theorem supports the
theoretical background of the test.
Anderson-Darling(AD) test: Anderson-Darling test is a modification of the KS test, i.e., more weight
is given to the tails compared to KS test. The test statistic is defined as

TAD = −n − S

where S =
∑n

i=1
2i−1

n [ln F(Yi) + ln(1 − F(Yn+1−i))] and F is the cdf of normal distribution, and Yi is
the ordered data. The null hypothesis that the samples come from the normal distribution is rejected
if the TAD is larger than the tabulated values calculated by Stephens (Stephens, 1974; Stephens, 1976;
Stephens, 1977).
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Cramer-von Mises(CvM) test: Let Y1, . . . ,Yn be the ordered samples in increasing order. The test
statistic is defined as

TCvM =
1

12n
+

n∑
i=1

[
2i − 1

2n
− F(Yi)

]2

.

Then the null hypothesis that the data come from the theoretical (normal) distribution (F) is rejected if
the value of TCvM is larger than the tabulated values calculated by Anderson, TW in 1962 (Anderson,
1962).
Shapiro-Wilk(SW) test: The Shapiro-Wilk test was developed in 1965 by Samuel Sanford Shapiro
and Martin Wilk (Shapiro and Wilk, 1965). The test statistic is defined as

TSW =

(∑n
i=1 aiyi

)2∑n
i=1 (yi − ȳ)2

where the constants ai are given by (a1, . . . , an) = mTΣ−1/(mTΣ−1Σ−1m)1/2. Here yi are ordered statis-
tics from normal distribution in increasing order and its expectation m = (m1, . . . ,mn) = (E(Y1), . . . ,
E(Yn)). The null hypothesis that the data come from the theoretical normal distribution (F) is then re-
jected if the value of TSW is larger than the predetermined values. Compared to the Anderson-Darling
test, the Shapiro-Wilk test is less affected by ties.
Shapiro-Francia(SF) test: The Shapiro-Francia test was developed in 1972 by Samuel Sanford Shapiro
and RS Francia (Shapiro and Francia, 1972). The test statistic is defined as

TSF =

(∑n
i=1 biyi

)2∑n
i=1 (yi − ȳ)2

where bi = mT /(mT m)1/2 and m is the vector of expected values of standard normal order statistics.
Note that TSF presents the squared product moment correlation coefficient between ordered observed
data and expected values of standard normal order statistics (Royston, 1983) with large values of TSF
indicating normality.

3. Exact Derivation of the Distribution of S k

Let U1, . . . ,Uk be random samples from uniform distribution U(0, 1) and S k = U1 + · · · + Uk. In this
section, we derive the distribution of S k for four different values of k = 2, 3, 4, 8 by using the change-
of-variable technique. Note that standard way of getting the distribution of sum of two independent
random variables is to use convolution. It is well known that when two random variables X,Y are
independent, the distribution of Z = X + Y is represented as

h(z) = ( f ∗ g)(z) =
∫

f (x)g(z − x)dx

where f , g and h are probability density functions of X,Y and Z, respectively. However, in case of
uniform distribution, each density function consists of a couple of different functions on each unit
interval. Therefore, we decompose each density function into subfunction which is defined on each
unit interval and then calculate the distribution sum of two independent random variables.
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Figure 1: Pdf of S 2 (left); Normal density function superimposed on pdf of S 2 (right).

3.1. k=2

Let U1 and U2 be random samples from uniform distribution, and Y1 = U1 + U2 and Y2 = U1 − U2.
Then Jacobian is calculated

J =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣ = −
1
2
.

Therefore, the joint distribution of Y1 and Y2 is

g(y1, y2) =
1
2
,

where the support of the joint distribution is depicted in Figure 1. The marginal distribution of Y1 (i.e.,
S 2) is

g2(y) =
{

y, 0 ≤ y ≤ 1,
2 − y, 1 ≤ y ≤ 2.

The mean and variance of S 2 are:

E(S 2) = E [U1 + U2] = 1,

Var(S 2) = Var(U1 + U2) =
1
6
.

Using CLT, we can approximate the distribution of S 2 with normal distribution, N(1, 1/6). Figure 1
includes two density plots. The plot in left panel presents the exact distribution of S 2 and the one in
right panel presents approximated normal distribution. Note that there are some difference between
two curves, implying that the approximation with small samples is not accurate.

3.2. k=3

Let U1, U2 and U3 be random samples from uniform distribution, and Y1 = U1 + U2 + U3 and
Y2 = U1 + U2 − U3. Since we know the distribution of X1 = U1 + U2 and X2 = U3, we can use them
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Figure 2: Pdf of S 3 (left); Normal density function superimposed on pdf of S 3 (right).

to get the distribution of Y1. The Jacobian is

J =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣ = −
1
2
.

Therefore, the joint distribution of Y1 and Y2 is

g(y1, y2) =


1
4

(y1 + y2) if 0 ≤ y1 + y2 ≤ 2,

1
2

(2 − y1 + y2

2
) if 2 ≤ y1 + y2 ≤ 4.

The marginal distribution of Y1 (i.e., S 3) is

g2(y) =



1
2

y2, 0 ≤ y ≤ 1,

−y2 + 3y − 3
2
, 1 ≤ y ≤ 2,

1
2

(y − 3)2, 2 ≤ y ≤ 3.

The mean and variance of S 3 are:

E(S 3) = E[X1 + X2] =
3
2
,

Var(S 3) = Var(X1 + X2) =
1
4
.

Using CLT, we can approximate the distribution of S 3 with normal distribution, N(3/2, 1/4). Figure
2 includes two density plots. The plot in left panel presents the exact distribution of S 3 and the one in
right panel presents approximated normal distribution.
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Figure 3: Transformation of support; support of joint distribution of (Z1, Z2) (left) and (Y1, Y2) (right), respec-
tively.

3.3. k=4

Let Y1 = (U1 + U2)︸      ︷︷      ︸
Z1

+ (U3 + U4)︸      ︷︷      ︸
Z2

and Y2 = (U1 + U2)︸      ︷︷      ︸
Z1

− (U3 + U4)︸      ︷︷      ︸
Z2

. The distributions of Z1 and Z2 are

given in the previous section. Then the Jacobian is the same as the previous case

J =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣ = −
1
2
.

Figure 3 presents the transformation of the support by such change-of-variable technique: Support of
the joint distribution of (Z1,Z2) and support of the joint distribution of (Y1,Y2). Using given informa-
tion, we get the joint distribution of Z1 and Z2 as follows:

f (z1, z2) =


z1z2, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1,
z1(2 − z2), 0 ≤ z1 ≤ 1, 1 ≤ z2 ≤ 2,
(2 − z1)z2, 1 ≤ z1 ≤ 2, 0 ≤ z2 ≤ 1,
(2 − z1)(2 − z2), 1 ≤ z1 ≤ 2, 1 ≤ z2 ≤ 2.

In order to derive the marginal distribution of Y1, we first need to derive the joint distribution
of (Y1,Y2) and then calculate the marginal distribution of Y1 by integrating out the joint distribution
with respect to Y2. To get the joint distribution of (Y1,Y2), we need to divide the support of Y1 into 4
sub-intervals and then calculate corresponding joint density functions on each interval separately.

Since the joint density is represented as

g(y1, y2) = f (z1, z2)|J|,

the marginal density of Y1 on the interval y2 ∈ [0, 1) is

g1(y1) =
∫ y1

−y1

y2
1 − y2

2

8

 dy2 =
y3

1

4
−

y3
1 + y3

1

24
=

1
6

y3
1.
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Figure 4: Transformation of support; (Z1,Z2) plane to (Y1,Y2) plane.

Similarly, marginal density on the interval [3, 4) can be calculated:

g1(y1) =
∫ 4−y1

y1−4

2 − y1 +
y2

1

8
−

y2
2

8

 dy2 = −
y3

1

6
+ 2y2

1 − 8y1 +
32
3
.

Compared to the previous two intervals, the joint density on the interval [1, 2) is more complicated.
It can be obtained by combining three different parts, each coming from different supports. Each of
three parts on (Z1,Z2) plane is transformed to different part on (Y1,Y2) plane. Figure 4 represents
such transformation. The marginal density of Y1 on interval y2 ∈ [1, 2) consists of the following three
separate parts.

g1(y1) =
∫ y1−2

−y1

y1 + y2

2

(
2 − y1 − y2

2

) 1
2

dy2 +

∫ 2−y1

y1−2

y2
1

8
−

y2
2

8

 dy2 +

∫ y1

2−y1

(
2 − y1 + y2

2

) y1 − y2

2
1
2

dy2

=
1
6

(
−3y3

1 + 12y2
1 − 12y1 + 4

)
.

Similarly, the marginal density on [2, 3) can be obtained by marginalization with respect to y2:

g1(y1) =
∫ 2−y1

y1−4

y1 + y2

2

(
2 − y1 − y2

2

) 1
2

dy2 +

∫ y1−2

2−y1

(
2 − y1 + y2

2

) (
2 − y1 − y2

2

) 1
2

dy2

+

∫ 4−y1

y1−2

(
2 − y1 + y2

2

) y1 − y2

2
1
2

dy2

=
1
6

(
−3y3

1 − 24y2
1 + 10y1 − 44

)
.
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Figure 5: Pdf of S 4 (left); Normal density function superimposed on pdf of S 4 (right).

The density function of S 4(= U1 + U2 + U3 + U4) is

f4(y) =



y3

6
, 0 ≤ y < 1,

−3y3 + 12y2 − 12y + 4
6

, 1 ≤ y < 2,

3y3 − 24y2 + 60y − 44
6

, 2 ≤ y < 3,

−y3 + 12y2 − 48y + 64
6

, 3 ≤ y < 4.

The mean and variance of S 4 are:

E(S 4) = 4E(U1) = 2,

Var(S 4) = 4Var(U1) =
1
3
.

Using CLT, we can approximate the distribution of S 4 with normal distribution, N(2, 1/3). Figure 5
includes two density plots. The figure in left panel presents the density function of S 4 while the other
presents the corresponding normal distribution.

3.4. k=8

Let Y1 and Y2 be defined as:

Y1 = (U1 + U2 + U3 + U4)︸                     ︷︷                     ︸
Z1

+ (U5 + U6 + U7 + U8)︸                     ︷︷                     ︸
Z2

,

Y2 = (U1 + U2 + U3 + U4)︸                     ︷︷                     ︸
Z1

− (U5 + U6 + U7 + U8)︸                     ︷︷                     ︸
Z2

.
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Figure 6: Transformation of support (k = 8); support of joint distribution of (Z1, Z2) (left) and (Y1, Y2) (right),
respectively.

Note that each distribution of Z1 and Z2 is given in the previous section. The Jacobian is calculated

J =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣ = −
1
2
.

The following figure (Figure 6) presents the change of the support of the joint distribution by such
transformation. After simple algebra, we can easily get the marginal distribution of Y1

g1(y1) =



y7
1

5040 , 0 ≤ y1 ≤ 1,
1

4608

[
− 32

5 y7
1 +

256
5 y6

1 −
768

5 y5
1 + 256y4

1 − 256y3
1 +

768
5 y2

1 −
256

5 y1 +
256
35

]
, 1 ≤ y1 ≤ 2,

1
240 y7

1 −
1

15 y6
1 +

13
30 y5

1 −
3
2 y4

1 +
55
18 y3

1 −
37
10 y2

1 +
223
90 y1 − 149

210 , 2 ≤ y1 ≤ 3,
1

288

[
−2y7

1 + 48y6
1 − 480y5

1 + 2592y4
1 − 8192y3

1 + 15264y2
1 − 15616y1 +

237792
35

]
, 3 ≤ y1 ≤ 4,

1
72

[
1
2 y7

1 − 16y6
1 + 216y5

1 − 1592y4
1 + 6912y3

1 − 17688y2
1 + 24768y1 − 513992

35

]
, 4 ≤ y1 ≤ 5,

1
36

[
− 3

20 y7
1 + 6y6

1 − 102y4
1 + 954y4

1 − 5294y3
1 + 17406y2

1 − 31366y1 − 836754
35

]
, 5 ≤ y1 ≤ 6,

1
72

[
1
10 y7

1 −
24
5 y6

1 +
492
5 y4

1 − 1116y4
1 + 7556y3

1 −
152532

5 y2
1 +

339524
5 y1 − 2245596

35

]
, 6 ≤ y1 ≤ 7,

1
72

[
− 1

70 y7
1 +

4
5 y6

1 −
96
5 y5

1 + 256y4
1 − 2048y3

1 +
49152

5 y2
1 −

131072
5 y1 +

1048576
35

]
, 7 ≤ y1 ≤ 8.

More details about the derivation of the distribution of S 8 is given in the Appendix. The mean and
variance of S 8 are:

E(S 8) = 8E(U1) = 4,

Var(S 8) = 8Var(U1) =
2
3
.

Using CLT, we can approximate the distribution of S 8 with normal distribution, N(4, 2/3). Figure 7
includes two density plots. The figure in the left panel presents the density function of S 8 while the
other presents the corresponding normal distribution.
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Figure 7: Pdf of S 8 (left); Normal density function superimposed on pdf of S 8 (right).

3.5. Practical view on another transformation

To get the exact distribution of the summation of random sample (S 2) from uniform distribution, we
try two different transformations to find out which transformation is easier. In the previous section,
we used the change-of-variable below:

Y1 = Z1 + Z2, Y2 = Z1 − Z2,

because it has symmetry property. Now, we also try another type of transformation:

Y1 = Z1 + Z2, Y2 = Z1.

Here we get the joint distribution of (Y1,Y2) using the second transformation. In case of k = 8,
Y1 = U1 + · · · + U8 and Y2 = U1 + · · · + U4. Then the joint distribution g(y1, y2) is given



1
36

[
−y6

2 + 3y1y5
2 − 3y2

1y4
2 + y3

1y3
2

]
, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1,

1
36

[
3y6

2 + (12 − 9y1) y5
2 +

(
9y2

1 − 24y1 + 12
)

y4
2

+
(
−3y3

1 + 12y2
1 − 12y1 + 4

)
y3

2

]
, 0 ≤ z1 ≤ 1, 1 ≤ z2 ≤ 2,

1
36

[
−3y6

2 + (9y1 − 24) y5
2 +

(
−9y2

1 + 48y1 − 60
)

y4
2

+
(
3y3

1 − 24y2
1 + 60y1 − 44

)
y3

2

]
, 0 ≤ z1 ≤ 1, 2 ≤ z2 ≤ 3,

1
36

[
y6

2 + (12 − 3y1) y5
2 +

(
3y2

1 − 24y1 + 48
)

y4
2

+
(
−y3

1 + 12y2
1 − 48y1 + 64

)
y3

2

]
, 0 ≤ z1 ≤ 1, 3 ≤ z2 ≤ 4,
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1
36

[
3y6

2 − (9y1 + 12) y5
2 +

(
9y2

1 + 36y1 + 12
)

y4
2 −

(
3y3

1 + 36y2
1 + 36y1 + 4

)
y3

2

+
(
12y3

1 + 36y2
1 + 12y1

)
y2

1 −
(
12y3

1 + 12y2
1

)
y2 + 4y3

1

]
, 1 ≤ z1 ≤ 2, 0 ≤ z2 ≤ 1,

1
36

[
−9y6

2 + 27y1y5
2 +

(
−27y2

1 − 36y1 + 72
)

y4
2 +

(
9y3

1 + 72y2
1 − 144y1

)
y3

2

+
(
−36y3

1 + 36y2
1 + 108y1 − 48

)
y2

2 +
(
36y3

1 − 108y2
1 + 48y1

)
y2

+
(
−12y3

1 + 48y2
1 − 48y1 + 16

)]
, 1 ≤ z1 ≤ 2, 1 ≤ z2 ≤ 2,

1
36

[
9y6

2 + (−279y1 + 36) y5
2 +

(
27y2

1 − 36y1 − 72
)

y4
2

+
(
−9y3

1 − 36y2
1 + 288y1 − 312

)
y3

2 +
(
36y3

1 − 180y2
1 + 180y1 + 96

)
y2

2

+
(
−36y3

1 + 252y2
1 − 528y1 + 288

)
y2 +

(
12y3

1 − 96y2
1 + 240y1 − 176

)]
,1 ≤ z1 ≤ 2, 2 ≤ z2 ≤ 3,

1
36

[
−3y6

2 + (9y1 − 24) y5
2 +

(
−9y2

1 + 36y1 − 12
)

y4
2 +

(
3y3

1 − 108y2
1 + 244

)
y3

2

+
(
−12y3

1 + 108y2
1 − 300y1 + 240

)
y2

2 +
(
12y3

1 − 132y2
1 + 480y1 − 576

)
y2

+
(
−4y3

1 + 48y2
1 − 192y1 + 256

)]
, 1 ≤ z1 ≤ 2, 3 ≤ z2 ≤ 4,

1
36

[
−3y6

2 + (9y1 + 24) y5
2 +

(
−9y2

1 − 72y1 − 60
)

y4
2 +

(
3y3

1 + 72y2
1 + 180y1 + 44

)
y3

2

+
(
−24y3

1 − 180y2
1 − 132y1

)
y2

1 +
(
60y3

1 + 132y2
1

)
y2 − 44y3

1

]
, 2 ≤ z1 ≤ 3, 0 ≤ z2 ≤ 1,

1
36

[
9y6

2 − (27y1 + 36) y5
2 +

(
27y2

1 + 144y1 − 72
)

y4
2 +

(
−9y3

1 − 180y2
1 + 312

)
y3

2

+
(
72y3

1 + 252y2
1 − 756y1 + 96

)
y2

2 +
(
−180y3

1 + 324y2
1 + 336y1 − 288

)
y2

+
(
132y3

1 − 528y2
1 + 528y1 − 176

)]
, 2 ≤ z1 ≤ 3, 1 ≤ z2 ≤ 2,

1
36

[
−9y6

2 + 27y1y5
2 +

(
−27y2

1 − 72y1 + 216
)

y4
2 +

(
9y3

1 + 144y2
1 − 432y1

)
y3

2

+
(
−72y3

1 + 36y2
1 + 1044y1 − 1488

)
y2

2 +
(
180y3

1 − 1044y2
1 + 1488y1

)
y2

+
(
−132y3

1 + 1056y2
1 − 2640y1 + 1936

)]
, 2 ≤ z1 ≤ 3, 2 ≤ z2 ≤ 3,

1
36

[
3y6

2 + (−9y1 + 12) y5
2 +

(
9y2

1 − 84
)

y4
2 +

(
−3y3

1 − 36y2
1 + 252y1 − 284

)
y3

2

+
(
24y3

1 − 108y2
1 − 156y1 + 816

)
y2

2 +
(
−60y3

1 + 588y2
1 − 1824y1 + 1728

)
y2

+
(
44y3

1 − 528y2
1 + 2112y1 − 2816

)
], 2 ≤ z1 ≤ 3, 3 ≤ z2 ≤ 4,

1
36

[
y6

2 − (3y1 + 12) y5
2 +

(
3y2

1 + 36y1 + 48
)

y4
2 +

(
−y3

1 − 36y2
1 − 144y1 − 64

)
y3

2

+
(
12y3

1 + 144y2
1 + 192y1

)
y2

1 +
(
−48y3

1 − 192y2
1
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Figure 8: Support transformation by the second transformation.
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, 3 ≤ z1 ≤ 4, 3 ≤ z2 ≤ 4.

Given the joint distribution of (Y1,Y2), we can get the marginal distribution of Y1 i.e., (S 8) by
integrating out the joint distribution with respect to Y2. Compared to the first type of change-of-
variable, the second type has advantages and disadvantages. Advantage is that (1) clearly, it has
simple joint distribution function. (2) integration on each subinterval is relatively simple because one
of integral section for each integration is constant. The marginal distribution of y1, f1(y1) on [0,1]
(shaded in red in Figure 8) is represented as

∫ y1

0 f 1dy2. However, the second transformation has a
disadvantage in that to get the marginal distribution of Y1 on [3,4], 7 different integrations (which
are calculated on different support) should be done because a symmetry property is not applied to
this kind of transformation. In contrast, only the first 4 integration are required since the first type of
transformation has a symmetry property. Here, symmetry means that the result of the first integration
is the same as the last integration.

4. Simulation

In this section, we check how close the distribution of S k is to its approximated normal distribution
obtained by CLT.

4.1. Simulation setup

Data generation consists of three steps:

Step1 Generate k random samples from U(0, 1): u1, . . . , uk

Step2 Sum k samples: y =
∑k

i=1 ui

Step3 Repeat the above two steps many times (say n): y1, . . . , yn
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Table 1: The number of rejection of null hypothesis for 3 different n = 100, 500, 1000 when α = 0.05.
AD CvM KS SW SF

n=100

S 2 70 51 52 94 32
S 4 42 47 53 28 9
S 8 40 40 32 29 19

Norm 46 47 43 37 38

n=500

S 2 555 287 148 972 886
S 4 93 73 60 118 58
S 8 40 34 45 45 29

Norm 52 49 57 55 53

n=1000

S 2 964 671 380 1000 1000
S 4 187 148 96 324 182
S 8 58 54 46 62 36

Norm 51 50 49 43 49

Table 2: The number of rejection of null hypothesis for 3 different n = 100, 500, 1000 when α = 0.01.
AD CvM KS SW SF

n=100

S 2 12 7 5 17 3
S 4 5 9 8 3 1
S 8 9 8 5 5 5

Norm 11 14 7 10 8

n=500

S 2 238 65 26 818 524
S 4 21 18 14 24 7
S 8 10 9 10 6 1

Norm 9 11 10 10 12

n=1000

S 2 749 305 117 1000 999
S 4 54 39 22 105 41
S 8 11 12 11 15 7

Norm 7 7 7 7 7

Given the simulated data, we can check the normality of the data by using five normality tests men-
tioned in previous section. We repeat the process many times (say B) and count the number of times
that the normality test does not reject the null hypothesis that the data come from a normal distribution.

4.2. Simulation results

Normal approximation improves as sample size increases. Clearly, the distribution of S k is closer
to the corresponding approximated normal distribution as k increases. Here we consider k = 2, 4, 8,
n = 100, 500, 1000, and B = 1000. As a reference, we also generate normal samples and check
how many times the normality tests reject the null hypothesis that the data come from in a normal
distribution. We consider two levels of significance α = 0.05 and 0.01. Normality test results for all
combination of parameters are given in the following tables. Table 1 includes the results of a normality
test when α = 0.05 while Table 2 includes the results for α = 0.01.

In the results of Anderson Darling test (the first column in Table 1) especially for n = 1000, there
are four numbers (such as 964, 187, 58 and 51). For example, 58 means the number of times that AD
test correctly rejects the null hypothesis that data come from normal distribution because data were
simulated from the distribution of S 8. The AD test made a wrong decision most of the time (942
times out of 1000). The reason is that the distribution of S 8 is very close to normal distribution such
that normality test cannot tell the samples of S 8 from normal samples. Similar to AD test, other tests
also made a wrong decision for the same reason. Generally speaking, the reason of poor performance
of the normality tests is because the two distributions are very similar and not because the tests are
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Figure 9: Histogram of p values when n = 1000; k = 2 (top left); k = 4 (top right); k = 8 (bottom left);
Normal data (bottom right).

improper.
We also provide the histogram of p values obtained by combining all normality test results to-

gether, i.e., 5000 values. Figure 9 shows that the histogram of p values from S k samples is closer to
that of the p values from normal samples as k increases. Especially, the histogram of p values from
the S 8 (bottom left histogram in the figure) is similar to the p values obtained from normal samples
(bottom right histogram in the figure). The two histograms provide some hints of why a normality test
cannot tell normal samples from the samples of S 8. Such phenomenon is not so obvious in S 2 and
S 4 compared to S 8. Note that the four histograms tell us that the distribution of S k is similar to the
normal distribution with sample size.

From another angle, we provide a plot that represents the number of correct rejection (NCR or
empirical power) for the combination of all parameters such as k, n and α. Note that NCR and
empirical power are equivalent measure when we use non-normal samples. Based on the results
in Figure 10, each test show a different performance for the case k = 2; however, performance is
getting similar as k increases. We also noticed that the effect of sample size on performance (NCR or
empirical power) is tremendous when k is small. However, such effect is insignificant when k is big.
That is, for small k, empirical power rapidly increased as sample size increases; however, empirical
power increases relatively slowly with sample size for large k.

5. Conclusion

In practice, we sometimes want to know the distribution of the summation of random samples for
statistical inference purposes. However, for many distribution, it is not too simple to derive and exact
distribution. The central limit theorem(CLT) helps provide an approximated normal distribution we
can use instead of and exact distribution. CLT enables a statistical inference without the derivation
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Figure 10: The number of correct rejection(NCR); Each row corresponds to two α = 0.05 and 0.01, respectively.
Each column corresponds to k, i.e. k = 2 (left), k = 4 (center), k = 8 (right).

of the exact distribution if the sample size is large. However, we still face the following practical
question. How big is big enough for us to use the approximated distribution without any problem? We
used random samples from uniform distribution to answer the question from a practical perspective.

In this paper, we first derived the exact distribution of summation of random samples from uniform
distribution. We then compared the exact distribution with the approximated normal distribution.
From this comparison, we noticed that the sample size of 8 is big enough to support the validity of
the central limit theorem. Two curves (pdf of S 8 and approximated normal pdf in Figure 5) were
overlapped over the whole range of the support of S 8. Furthermore, the biggest difference between
two curves happen at the center and at 0.0089. For comparison purpose, in case of S 4, the biggest
difference between two curves is about 0.0242. It is clear that such biggest difference decreases as k
increases. However, an adequate sample size should be considered depending on situation.

Appendix: Derivation of the Distribution of the S 8

Let Y1 and Y2 be denoted by:

Y1 = (U1 + U2 + U3 + U4)︸                     ︷︷                     ︸
Z1

+ (U5 + U6 + U7 + U8)︸                     ︷︷                     ︸
Z2

,

Y2 = (U1 + U2 + U3 + U4)︸                     ︷︷                     ︸
Z1

− (U5 + U6 + U7 + U8)︸                     ︷︷                     ︸
Z2

.
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Note that each distribution of Z1 and Z2 is given in Section 3.3. The Jacobian is

J =

∣∣∣∣∣∣∣∣∣∣
1
2

1
2

1
2
−1

2

∣∣∣∣∣∣∣∣∣∣ = −
1
2
.

Using given information, we get the joint distribution of Z1 and Z2

f (z1, z2) =
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To re-express the joint distribution of (Z1,Z2) into the function of (Y1,Y2), we have to replace (Z1,Z2)
in the 16 formula above with (Y1,Y2). Thus the re-expression of the joint distribution of Z1 and Z2 is:
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Support also should be represented using y1 and y2 instead of z1 and z2 even though we retain z1 and
z2 for notational simplicity. If we denote the 16 functions above by f 1, . . . , f 16 in order, then the
marginal distribution of Y1 is represented as:
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4−y1

f 11dy2 +

∫ 6−y1

y1−4
f 10dy2

+

∫ y1−2

6−y1

f 14dy2 +

∫ 8−y1

y1−2
f 13dy2

]
, 4 ≤ y1 ≤ 5,

1
2

[∫ 4−y1

y1−8
f 8dy2 +

∫ y1−6

4−y1

f 12dy2 +

∫ 6−y1

y1−6
f 11dy2 +

∫ y1−4

6−y1

f 15dy2 +

∫ 8−y1

y1−4
f 14dy2

]
, 5 ≤ y1 ≤ 6,
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1
2

[∫ 6−y1

y1−8
f 12dy2 +

∫ y1−6

6−y1

f 16dy2 +

∫ 8−y1

y1−6
f 15dy2

]
, 6 ≤ y1 ≤ 7,

1
2

∫ 8−y1

y1−8
f 16dy2, 7 ≤ y1 ≤ 8.

As can be seen in the formula above, the marginal distribution of Y1 on [3,4] consists of seven
integration. However, it can be obtained by finishing the first four integration because the first inte-
gration is the same as the last integration, i.e.,

∫ y1−6
−y1

f 4dy2 =
∫ y1

6−y1
f 13dy2. Let us call this property

symmetry. Due to this kind of symmetry, we can easily get the marginal distribution of Y1 after simple
algebra,

g1(y1) =

y7
1

5040
, 0 ≤ y1 ≤ 1,

1
4608

[
−32

5
y7

1 +
256

5
y6

1 −
768
5

y5
1 + 256y4

1 − 256y3
1 +

768
5

y2
1 −

256
5

y1 +
256
35

]
, 1 ≤ y1 ≤ 2,

1
240

y7
1 −

1
15

y6
1 +

13
30

y5
1 −

3
2

y4
1 +

55
18

y3
1 −

37
10

y2
1 +

223
90

y1 −
149
210

, 2 ≤ y1 ≤ 3,

1
288

[
−2y7

1 + 48y6
1 − 480y5

1 + 2592y4
1 − 8192y3

1 + 15264y2
1 − 15616y1 +

237792
35

]
, 3 ≤ y1 ≤ 4,

1
72

[
1
2

y7
1 − 16y6

1 + 216y5
1 − 1592y4

1 + 6912y3
1 − 17688y2

1 + 24768y1 −
513992

35

]
, 4 ≤ y1 ≤ 5,

1
36

[
− 3

20
y7

1 + 6y6
1 − 102y4

1 + 954y4
1 − 5294y3

1 + 17406y2
1 − 31366y1 −

836754
35

]
, 5 ≤ y1 ≤ 6,

1
72

[
1
10

y7
1 −

24
5

y6
1 +

492
5

y4
1 − 1116y4

1 + 7556y3
1 −

152532
5

y2
1 +

339524
5

y1 −
2245596

35

]
, 6 ≤ y1 ≤ 7,

1
72

[
− 1

70
y7

1 +
4
5

y6
1 −

96
5

y5
1 + 256y4

1 − 2048y3
1 +

49152
5

y2
1 −

131072
5

y1 +
1048576

35

]
, 7 ≤ y1 ≤ 8.
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