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ABSTRACT

In this note we consider other type of tightness than that of Birkel(1988)
and prove an invariance principle for nonstationary associated processes by
an application of the central limit theorem of Cox and Grimmett(1984),thus
avoiding the argument of uniform integrability. This result is an extension to
the nonstationary case of an invariance principle of Newman and Wright(1981)
as well as an improvement of the central limit theorem of Cox and Grimmett

(1984) .
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1. INTRODUCTION AND NOTATION

Throughout this paper let {X, : 7 € N} be a sequence of random variables on
some probability space (2, F,P) with £X; =0, EX? < oco. Forn e N, put

n
Yy . s 2 _ ey
S,=3 X, and o) = ES..
=1
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{X, : 7 € N} is said to satisfy the central limit theorem, if 0'S, — N(0, 1) weakly.
Define random elements W, in D0, 1] endowed with the Skorokohod topology(see
[1], §14) by

W.(t) = U;lS[m] , t € [0,1] , n €N, (1.1)

and let W denote a random element in D0, 1] with Wiener measure as its distri-
bution. If the distribution of W, converges weakly to Wiener measure we write
W, 25 W and say that {X,:7 € N} fulfills the invariance principle(i.p).

In this paper we consider the invariance principle for sequences satisfying associ-
ation. A finite collection { X}, X3,..., X,,} of random variables is associated if for any
two coordinatewise nondecreasing functions f,f; on R™ such that j?,-:f,-(Xl7 sy Xom)
has variance for i=1,2, there holds Cov(fl,fg) > 0. An infinite collection is associ-
ated if every finite subcollection is associated (cf. Esary, Proschan and Walkup[5]).
Associated processes are of considerable use in physics and statistics and have been
investigated in recent years to a great extent (see, for example, Newman [6] and
the references therein). Newman[6] has shown that associated processes satisfy the
central limit theorem. Our aims of this paper are to provide other type of tightness
than that of Birkel[2] and to improve a central limit theorem of Cox and Grimmett
(4] to an invariance principle by adding the condition that (¢2/n) — o2 € (0, c0).

Our result is also an extension to the nonstationary case of an invariance prin-
ciple of Newman and Wright[7]. In section 2, We obtain a maximal inequality and
a probability inequality ( Theorems 2.2 and 2.3 )which are generalizations of those
of Newman and Wright[7] and use them in the proof of our tightness. Newman and
Wright (8] derived martingale type inequalities related to Theorem 2.3 and Birkel[2]
used them to obtain tightness for nonstationary associated processes. In section 3,
we have another proof of the tightness of {W, } and prove the in variance principle
for a nonstationary associated processes by an application of the central limit theo-
rem of Cox and Grimmet[4], thus avoiding an argument for the uniform integrability.

2. PRELIMINARIES

Cox and Grimmet[4] weakened the assumption of stationarity and replaced it by
certain conditions on the moments of random variables. Using the coefficient

u(n) = sup Z Cov(X;, X¢),n € NU {0},
FEN jilj-kl<n

they obtained the following central limit theorem:
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Theorem 2.1. (Cox,Grimmet(1984)). Let {X; :j € N} be a sequence of asso-
ciated random variables with £X; = (),EX]-2 =0 < oco. Assume

u(n) —, 0, u(0) < oo, (2.1)
}g}{/ Var(X;) > 0, (2.2)
sup E|X;® < . (2.3)
jEN

Then {X, : j € N} satisfies the central limit theorem, that is, 0,15, is asymp-
totically normally distributed.

In order to use Theorem 1 of Newman and Wright(1981) to the nonstationary
case a slight variation is made in the following lemma and this may be considered
as a generalization of that of [8].

Lemma 2.2. Let {X;:j € N} be a sequence of associated random variables
with £X; =0, EX? < oo. Define forn € N, m € N U {0},

Sm,n = Sn+m —Sm

and

M’m,‘n == ma:c(Sm,l, Sm,‘Za LR Sm,n)-

Then
E(M“2 ) < Var(S,.)- (2.4)

m,n

Proof. Define

[{m,n - min(X2+m + -+ Xn+ma X3+m + -+ Xn+m’ e aXn-i-maO)a
Lm,n = TTL(I,.’L‘(AXQ_*_m, 4X2+m + X3+m7 Ty X2+m +--+ Xn+m)’

and J,, , = maz(0, L., ). Then we obtain that Cov(Xy4m, Km ) = 0, since K, ,, =
Xoym+ -+ Xogm — Jmn is a nondecreasing function of the Xs , that Ji'n < L;"n'n
pointwise and that M., , = Xi4m + Jm,» and thus

E(M} ) = E(Xipm + Jmn)
= Var(Xi4m) + 2C00(X14m, Jmn) + E(J2 )
= Var(Xism) + 2C00(X14m, Xogm + -+ Xngm)
—2Cov( Xy 4ms Koun) + E(J,(‘:L_n)

S VaT(Xler) + 2(/'0/0(‘X'1+7n’ X2+1n + -+ Xn+m) + E(L,,zn‘n). (2.5)
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The proof is completed by induction on m since E(Lfnyn) < Var(Xoypm + -+
Xn4m) which together with (2.5) yields (2.4).

Remark.
(A) If we put m = O,then the result of this lemma automatically implies that of
Newman and Wright(1931).
(B) A slight variation of the above proof shows that (2.4) remains valid with M,, ,
replaced by SU) the j th order statistic of (Sm1sSm2y Omn)-

m,n?

We next define for n € N,m € N U {0}

S:n,n = max(oaSm,laSm,Za“'vSm,n)y = ES?n no
where S, = Sutm — Sm. The following inequalities are extensions of those in

Newman and Wright[8] to the nonstationary case and will be used to provide the
tightness needed for our invariance principle in the nonstationary case;

Theorem 2.3. For A\, > A; > 0,

P(Sh.2 X)) <1 —=s7 /(A2 = M) P(Sm = A1), (2.6)
P(maz(|Smil, s |Smn)l = Asmn) < 2P(ISmnl = (A = V2)smn). (2.7)

Proof. For 0 < A, < Ay,

P(S55n 2 X2) S P(Smpn 2 A1)+ (S:n'n. 1>/\2,5:nn 1 = Smm 2 A2 — Ar)
SP( ng/\)+P( mul— ) (‘S:nn.l—-Smyn>A2_/\1)
<P

(Smpn 2 M)+ P(S],, 2 )E((SZM 1= Sma)’)/ (A2 = M)*. (2.8)

Now Theorem 2.2 with X,4,, replaced by Y;y,, = —X,_i114m yields that

E([S:;t n—-1" m,n]2) = E([max(yrl+m’ )/1-4-171 + }/2+m7 R} Yi+m + Y2+m7 R Y;L+m)]2)

S E(S'?n,n) = 31211,117 (29)
which together with (2.8) yields (2.6) for (A — A,)? > s2, .- By adding to (2.6) the
analogous inequality with each X,,, replaced by —X,,,, in (2.6), and by choosing
A2 = ASmmy A1 = (A — ﬂ)sm'n, (2.7) will be obtained.

Remark.
(A) The second inequality in (2.8) follows from the fact that S, . ; and S, —S7
are associated since they are both non-decreasing functions of the Xiyns and the
fact that P(X > z,Y > y) > P(X > z)P(Y > y) for associated random variables
X and Y.
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(B) (2.7) will yield by the standard argument the needed tightness of the distri-
butions of W:s to obtain the desired convergence in distibution ( see the proof of
Theorem 8.4 in Billingsley([1]).

(C) If we put m = 0 the result of this theorem automatically imply those of Newman
and Wright(1981).

3. AN INVARIANCE PRINCIPLE

Theorem 3.1. Let {X;:5€ N} bea sequence of associated random variables
with EX; = 0, EX? < co. Assume that {X;:j € N} satisfles (2.1), (2.2) and
(2.3). If {X;;7 € N} satisfies

n~lol —s, 0% € (0,00). (3.1)
Then {X;} fulfills the invariance principle.

Proof.  Certainly since (2.1),(2.2) and (2.3) are fulfilled {X,} satisfies the
central limit theorem (see Theorem 2.1). We first show that the finite-dimensional
distributions of the W, converge to those of W. It follows from (3.1) and the fact
that [nt]/n —, t

07:20'[2,”] —t , for t>0 (3.2)
and hence (3.2) and Theorem 2.1(central limit theorem) yield
071 Sing ~2> N(O, t). (3.3)

By a simple consequence of the estimate

n(j—i)

0< J,?QE(Snj — Sni)(Sn — Snk) < 0';2 Z u(r),
r=1
for: <j <k <le NU{0} and assumptions (2.1) and (3.1), we have
0. E((Spj = Sni)(Sut — Suk)) —n 0 for i<j<k<le NU {0}. (3.4)

and (3.2), (3.4),and Lemma 2 of Birkel[2] yield
Cov(Un,i, Un j) —, 0 for all i(#)j. (3.5)

where U,; = W, (t;) = Wi(t,.)), 0<t; <---<t,<1. Thusif (Uy,...,Uy) is a
limit in distrbution of any subsequence of (Un,s---Un k), the Uis would be associated
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and uncorrelated random variables and hence independent by Corollary 3 of New-
man|7](or the remark following Theorem 1 of Newman and Wright[8]). This yields

Uni = Walts) = Waltisy) — N(0 8 — ti), (3.6)

according to (3.3) and this, together with (3.6), shows that the finite dimensional
distributions of W, converge to those of the standard Wiener process. Next applying
(2.7) in Theorem 2.3 and writing X’ =M 0n/Sm.n), we have for A" > 21/2,

P{maxiSnlsi-f-m - Sm| Z AO'n} = P{Tnaxi§n15i+m - Sml 2 A::L,n}
1
< 2P{|Sn+m - Sml 2 5/\:;71}

By the central limit theorem and Chebyshev’s inequality,
1 1
P{|Snim = Sml| 2 5)‘13m,n} —n P{IN| 2 5)‘1}
8
< () BV

8 3 3
= —A—g(sm,n/an) E{|N' }

Since
0 < U;QS;m = Uvsz(Sm—Fn - Sm)2
S 0;2(E5121+m - ES?n) n 1

if € is positive, we have

nh_g.lo sup P{mazicn|Sizm — Sm| 2 Aoy} < e//\2

for sufficiently large A. Therefore tighteness now follows by Theorem 8.4 of Billings-
ley(1968).

Remark.

(A) For a strictly stationary sequence of random variables condition(7) in Theorem 3
of Newman and Wright[8] implies u(0) = ¢?, u(n) = 23°72,11 Cov(X,,X;), n €N,
and hence (2.1) and (2.2) are automatically satisfied and condition (7) in Theorem
3 of [8] obviously implies (3.1) (see [1] ,§20 ,Lemma 3). Therefore in the stationary
case Theorem 3.1 is the invariance principle of Newman and Wright [8] except the
superflous third moment condition (2.3) .

(B) (3.2) and (3.4) imply condition (2.1) in Theorem 1 of Birkel [2] (see Lemmas 2
and 2 of [2]) and then (3.2), (3.3) and (3.4) imply condition (i) of Theorem 2 of [2].
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Therefore the proof of Theoem 3.1 can be completed by Theorem 2 of Birkel [2].
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