231

Journal of the Korean
Statistical Society
Vol. 26, No. 2, 1997

An Empirical Central Limit Theorem for the
Kaplan-Meier Integral Process on [0, 00)!

Jongsig Bae!

ABSTRACT

In this paper we investigate weak convergence of the integral pro-
cesses whose index set is the non-compact infinite time interval. Our
first goal is to develop the empirical central limit theorem as random
elements of D[0,00) for an integral process which is constructed from
11d variables. In developing the weak convergence as random elements
of D[0,00), we will use a result of Ossiander(4) whose proof heavily
depends on the total boundedness of the index set. Our next goal is
to establish the empirical central limit theorem for the Kaplan-Meier
integral process as random elements of D[0, co). In achieving the goal,
we will use the above 7id result, a representation of Stute(6) on the
Kaplan-Meier integral, and a lemma on the uniform order of conver-
gence. The first result, in some sense, generalizes the result of empiri-
cal central limit theorem of Pollard(5) where the process is regarded as
random elements of D[—o0, 00| and the sample paths of limiting Gaus-
sian process may jump. The second result generalizes the first result to
random censorship model. The later also generalizes one dimensional
central limit theorem of Stute(6) to a process version. These results
may be used in the nonparametric statistical inference.
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1. INTRODUCTION

Weak convergence of the integral processes whose index set is the non-
compact infinite time interval is investigated in the context of empirical cen-
tral limit theorems. Beginning with an empirical process, we first discuss
the differences between compactness and non-compactness of index sets on
which the process is defined. Our first goal of the present work is to develop
the empirical central limit theorem as random elements (r.e.) of D[0, o) for
an integral process which is constructed from the independent and identi-
cally distributed(izd) random variables. Using the weak convergence result of
Ossiander(4), for example, whose result heavily depends on the total bound-
edness of the index set of the process, we establish the weak convergence as
r.e. of D[0,00). In this work we use the uniform metric on compacta as
the underlying metric of D[0, c0). Our next goal of the paper is to establish
the empirical central limit theorem for the Kaplan-Meier integral process as
r.e. of D[0,00). In achieving the second goal, we will use the did result, a
representation of Stute(6) on the Kaplan-Meier integral, and a lemma on the
uniform order of convergence. For the completeness of the proof of the second
result, we provide the proof of the lemma in Appendix.

Proposition 1 of the present paper, in some sense, generalizes the result
of empirical central limit theorem of Pollard(5) where the process is regarded
as r.e. of D[—oco,00] and the sample paths of limiting Gaussian process
may jump. Theorem 1 is a generalization of Proposition 1 in the sense of
dealing with censored data. That is, when there is no censoring, Theorem 1
boils down to Proposition 1. Theorem 1 is also a generalization of the one
dimensional central limit theorem of Stute(6). Projecting to a point, Theorem
1 boils down to the central limit theorem under random censorship.

These results may be used in the nonparametric statistical inference such
as in constructing confidence bands of a survival distribution or in testing
where the test statistic takes a continuous functional form of the Kaplan-
Meier integral process. See, for example, Gill(2).

Let X be a random variable defined on a probability space (Q F,P) with
distribution function F. Consider a sequence {X; : i > 1} of independent
copies of X . Define

5.(t) = %i[{xi <t} - F()] (L1)

Weak convergence of the non-compact infinite time scale process such as
S, is of interest. Recall that a cadlag function is meant by a real-valued
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function defined on a subset of real line that is right continuous with left
limit. One may think of S, as r.e. of D[—o00,0], the space of cadlag
functions on the compact interval of extended real line [—o0o, o0] by setting
S,(—00) = S, (0c0) = 0. However, it sometimes more natural to think of S, as
r.e. of D(—o00,00), the space of cadlag functions on the non-compact interval
of real line (—o0, o). See, for example, Pollard(5).

Throughout the paper, having applications in survival analysis in mind,
the weak convergence of the main processes will be treated as r.e. of D[0, 00},
the space of all real-valued cadlag functions on [0,00), not on D(—o0,c0).
Events are identified with their indicator functions when there is no risk of
ambiguity. So, for example, the events {X; < t} in the summand of the
Eq.(1.1) means the indicator functions of the events {X; < t}.

Consider a measurable function ¢ : R — R such that [ ¢*dF < oo. Since
Xi,...,Xn, ... are #id random variables, we see that ¢(X,), ..., ¢(X,),... are
also iid random variables. Then the process defined by

S, (t) = %i[cp(X,-){Xi <t} - /cp(ac){:r < t}dF(z)] for t € [0,00) (1.2)

is more flexible than that defined in the Eq.(1.1) in many applications. By
considering ¢ = 1, we notice that the Eq.(1.2) reduces to the Eq.(1.1).

2. THE MAIN RESULTS

Our first goal of the present paper is to establish the weak convergence
of the process S, defined in the Eq.(1.2) to a Gaussian process as r.e. of
D[0, 00).

Let X be a random variable defined on a probability space (Q, F, P) with
distribution function F. Consider a sequence {X,; : 7 > 1} of independent
copies of X. Let ¢ : R — R be a measurable function such that [ @?dF < 0.
Consider the process {S,} given by the Eq.(1.2). By introducing the usual
empirical distribution function defined by F,(z) = % Yr{Xi<z}forx € R,
we may simplify S, (t) as

5.(6) =n? [w(2){e < }d(F, - F)(@)
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We are interested in the weak convergence of the integral process {S,(t) :
t € [0,00)} as r.e. of D[0,00), to a Gaussian process whose sample paths are
continuous. We use the following definition of convergence in distribution in
developing the weak convergence of the processes as r.e. of D[0, 00). We first
need to specify the metric we will use.

Definition 1. (Pollard(5)) A sequence of functions {z, } in D[0, co) converges

uniformly on compacta to a function z if

sup |z, (t) — z(t)] — 0 as n — oo for each fixed k.
1<k

Equivalently, d(z,,z) — 0, where

d(z,,z) = i 27 % min[1, dy (., z)]
k=1
d(za,z) = sup|z.(t) — z(t)].

t<k

We equip the space D[0,c0) with the metric d and the projection o-field
P. See, for example, Pollard(5).

Definition 2. A sequence {Y,} of r.e. of D[0,00) converges in distribution
to a random element Y, denoted Y,, = Y, if

Eg(Y,) — Eg(Y) for each g € C(D|0, x))

where C(D[0,0)) is the set of all bounded. continuous, P-measurable func-
tions from D[0, co0) into R.
Write, for each t € [0, 00),

£(1) = p(OIX < 1} = [ele){z < )eF (@)
Let {Z(t) : t € [0,00)} be the mean zero Gaussian process with

Couv(Z(s), Z(t)) = Cov(£(s), £(t)). (2.1)

We are ready to state one of the main results which can be regarded as
the empirical central limit theorem for the integral process constructed from
iid random variables.

Proposition 1. Suppose that [ ¢?dF < oco. Then

S, = Z as r.e. of D[0,00).
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The process {Z(t) : t € [0,00)} is the mean zero Gaussian with continuous
sample paths and the covariance structure is given by the Eq.(2.1).

Remark 1. The result of Proposition 1, in the sense of considering the
process whose index set is non-compact, extends the empirical central limit
theorem of Pollard, see Theorem 5.11 of Pollard(5), which states that the
empirical process {S,} where, as in the Eq.(1.1),

S.(t) = %i{{xi <t} — F(t)]

converges in distribution to a Gaussian process as r.e. of D[—o0,00]. It is
worth noting that the limiting Gaussian process need not have continuous
sample paths.

In the proof of Proposition 1, we will make use of a result on the weak
convergence of an empirical process whose index set is a totally bounded
metric space. We first look at the process {S,|j01)}, the restriction of S, to
[0, 1], that is given by

1 n
Snl[Ol](t) = 7;261(t) for t S [O, 1],
i=1

where, for each fixed t € [0, 1], {&(t)} are independent copies of {(t). Then
the restricted process {S.|j,1} can be regarded as r.e. of D[0,1]. Notice
that, for each fixed t € [0, 1], £(¢) has the mean zero and finite variance. We
will use the following Lemma in the proof of Proposition 1.

Lemma 1. Suppose that [ ¢2?dF < co. Then
Salo1) = Zlpa as r.e. of D0, 1].

The limiting process {Z(t) : t € [0,1]} is the mean zero Gaussian with con-
tinuous sample paths and the covariance structure is given by the Eq.(2.1).

Proof of Lemma 1. The result is well known because the underlying index
set of the process is compact, in particular totally bounded. See, for example,
Theorem 3.1 of Ossiander(4).

Proof of Proposition 1. By Lemma 1, we notice that for each fixed &,
Snlox] = Zljps) as r.e. of D[0,k], where the limiting process {Z(¢)|jo.x :
t € [0,k]} is the mean zero Gaussian with continuous sample paths and the
covariance structure is given by the Eq.(2.1). Now the d-continuity of sample
paths of the Gaussian process {Z(t) : t € [0,00)} follows from d;-continuity
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of sample paths of {Z(t)|p.) : t € [0, k]} for all k. Now use Theorem 5.23(p.
108) in Pollard(5), by noticing that the continuity of sample paths of the
limiting random element Z, to conclude that S, = Z as r.e. of D[0,00). The
proof of Proposition 1 is completed.

Our second goal is to establish the weak convergence of the Kaplan-Meier
integral process on [0, 00) which is constructed from the incomplete data of
random censorship model. Again let ¢ : R — R be a measurable function
such that [p?dF < oo. Consider the random censorship model where one
observes the incomplete data {Z;,6;}. The {Z,} are independent copies of
Z whose distribution is H. The {Z,,6,} are obtained by the equations Z; =
min(X;,Y;) and §; = {X,; < Y;} where the {Y;} are independent copies of the
censoring random variable Y with distribution G which is also assumed to
be independent of F, the distribution of iid random variables X; of original
interest in a statistical inference. Let F{a} = F(a)— F(a—) denote the jump
size of F at a and let A be the set of all atoms of H which is an empty set
when H is continuous. Let 7y = inf{z : H(z) = 1} denotes the least upper
bound of the support of H. Notice that the Ty is not necessarily finite which
provides one of the reason why we need the theory of weak convergence of the

infinite time scale stochastic processes. Consider a subdistribution function
F that is defined by

_ B F(CL‘), if(L'<THa
”ﬂ‘{pmﬁ»umeAwhﬂ,ﬁwZW-

Consider the Kaplan-Meier integral process {U,(t) : t € [0,00)} defined
by

Ua(t) = n'/? /go(a:){x < t}d(Fy — F)(z) for t € [0,00),  (22)

where F, is the usual Kaplan-Meier estimator constructed from the random
censorship model. See, for example, Kaplan and Meier(3). The process
{U.(t) : t € [0,00)} will be the proper extension of the process given in
the Proposition 1 to the random censorship model. As mentioned before our
goal is to consider the weak convergence of the Kaplan-Meier integral process
U, to a Gaussian process as r.e. of D[0,00) under the minimal assumptions
due to Stute(6). In order to describe the assumptions, we need to consider
the following subdistributions functions

A) = P(Z<28=0)=[ (1-F()C(dy), and

Al(z) = Hzgaéznz/;ﬂ—G@ﬂwuwzeR.
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Define
y(z) = exp{/_: %}, and
o - [ G(dy)
°w = [, raEen=ewy

The following two assumptions, which are trivially satisfied when there is
no censoring occurred, will be imposed on Theorem 1.

/gz(m)72(m)ﬁl(dx) = /[cp(Z)’y(Z)é]zdP < oo, and (2.3)
/lcp(x)|Cl/2(a:)ﬁ’(dm) < 0. (2.4)

Before stating Theorem 1, we need more notations:

#e) = g e < whedwn ) du),

Yi(z) = //{v <zu< w}%ﬁo(dv)ﬁl(dw),

where, for notational simplicity, ¢(-)1(—s,(+) is denoted by ¢,(-). Write, for
each fixed t € [0, 00),

61) = ¢ 2)(2)6 - [ 0dF +4(2)(1 - 8) = 4(2)
Let {W(t):t € [0,00)} be the mean zero Gaussian process with
Cov(W (s), W (t)) = Cov((s), £(1)). (2.5)
We are now ready to state Theorem 1 which can be regarded as the em-

pirical central limit theorem for the Kaplan-Meier integral process that are
constructed from incomplete data in the random censorship model.

Theorem 1. Assume that (2.3) and (2.4). Then
U, = W as r.e. of D[0,00).

The process {W (t) : t € [0,00)} is the mean zero Gaussian with continuous
sample paths and the covariance structure is given by the Eq.(2.5).
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Remark 2. The central limit theorem for a Kaplan-Meier integral of Stute(6),

which states that under the same assumptions of Theorem 1, for each fixed
t € [0, 00),

n'/? /cptd([:’,, — F) — N(0.02(t)) in distribution,

where 0%(t) = Var{p,(Z)v(Z)é +vi(Z)(1 — 6) — v3(Z)}, will be one dimen-
sional version of Theorem 1. To see this, for each fixed ¢, apply the usual
Continuous Mapping Theorem with the continuous mapping 7, defined by
m,(z) = z(t) on Theorem 1.

In the proof of Theorem 1, we will use the following Proposition 1 of
Stute(6), Proposition 1 of the empirical central limit theorem for the integral
process of #d variables, and Lemma 2 whose proof is provided in Appendix.

Proposition 2. Assume that (2.3) and (2.4). Then for each fixed ¢ € [0, o0)
we have

N 1 n 1 n 1 n
/<Ptan = ;Z‘Pt(zi)'Y(Zi)éi + - Z’Y{(Zi)(l —6;) — - Z’Yé(Zi) + R.(t),
i=1 i=1 i=1

(2.6)
where /n|R, (t)| =% 0.

Lemma 2. Under the assumption (2.3) and (2.4),

lim sup P {sup v/n|R,(t)] > ¢} = 0 for every € > 0.

n-—00 teR

Reme}rk 3. The summands of the first sum in the Eq.(2.6) have expectation
J ¢ dF, while the summands of the second and the third sum have identical
expectations. That is, by the Eq.(2.6), we have the representation,

w2 [ p(w)d(F, - F)w) :n*/?iei(twn”?m(w. @

where & (t) = ¢, (Z:)7v(Z:)6: — [ dF +~44(2)(1 — &) — 74(Z;) and, for each
fixed t, the £(t)’s are iid with the mean zero and the variance ol(t) =
Var{e(Z)7(2)8 +71(2)(1 - 8) = 73(Z)}-

Proof of Theorem 1. By the Eq.(2.7), we have the representation

U, (t) = n'/? /cpt(w)d(ﬁn _ F)(w) = Va(t) + n'/?R, (t),
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where V,, (t) = n~ Y2 30, &(t). Apply Proposition 1 to conclude that V,, = W
as r.e. of D[0,00) and the limiting process {W (t) : t € [0,00)} is the mean
zero Gaussian with continuous sample paths and the covariance structure is

given by the Eq.(2.5). Now use Lemma 2 to complete the proof of Theorem
1.

APPENDIX

In this appendix we make our efforts to complete the proof of Lemma
2 which gives the uniform order of convergence of the remainder R,(t), an
essential fact in deriving the empirical central limit theorem for the Kaplan-
Meier integral process. For the purpose we examine the representations of
R, of Stute(6). We begin with stating ingredients which are need to examine
the remainder R,,.

Let H,, I;T 0 and H! be the empirical (sub-) distribution functions of
H, H, and H!, i respectlvely In order to describe the specific form of the
remainder terms R, (t) we need the following form of f ¢.dF,. Lemma 2.1 of
Stute(6) states that, under continuity of H,

. w— 1 - .
[edbn = [ew)espn [l + o sl R d0). ()
The exponential term in the Eq.(1) can be expended as

exp{/oo ————lH Sz))}[l + n/—i: In[1 + A H.G) _tqn(z))]flg(dz)

z- H'(dz) U 70
— — ]+ = —_—|H(d
/. 1= H(z )]+ An [ Wl + oy e ()
/Z'_ Ho(dz) }2
— 00 1 - H(Z) ’
where A, is between the two terms in brackets. Write
Zi- 1 - 2= H'(dz)
A = n/ Il + ———A%(d= —/
~o0 | n(l—H,,(z))] (dz) o 1—H(z)
= Bz’n +Cina

with

239
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Zi- Ho(dz)

zi-
B, = n/ In[1 +
—00 oo 1-H Z)

1 70
m]Hn(dZ) /

and

v [ G [

Denote for simplicity
Ho(u,v,w) = Hy (HL0) A3 (w),
H,(u,v,w) = H, (u)H(v)H(w) + H(u)H(v)H (w)
+H(u)H(v)H} (w) - 2H (u)H°(v)H' (w),
H,(v,w) = H (v)H}(w), and
H,(v,w) = H(W)H} (w) + A (v)H' (w) — H*(v)H ) (w).
Then the R, (t) is given by

R, (t) = Sn1(t) + Saz(t) + Rai(t) — qu(t) + 2R.5(t),

where
Sm(t) = lz":sot(zi)w(z.-)a,-Bm,
Spa(t) = —_Z Lo 218 (Bin + Cin )2,

_ Ao <)o) HE) gog i
Ru®) = [ o) g g iy e (),

Ra(t) = /// ,(w)7(“’){” <H"(v"); “} g (du, dv, dw)
/// oo (w )7("’){” <Y< W} g gy, dv, dw), and

H (v))?
Ras(t) = // (w )7(“’){2? ;”} (dv, dw)
// (w){z;}? Q)D}H (dv, dw).

Remark 4. An important observation in a derivation of the uniform order
of convergence of R, (t) is that Ai,, Bin, Cin, A, and v do not depend on t.
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Let us begin with the following temporary assumption which is originally
due to Stute(6).

¢(z) =0forallz > T, for some T < 7. (2)

Remark 5. Using the assumptions (2.3) and (2.4), the temporary assump-
tion (2) can readily be removed without any harm, as was done in Stute(6).

Remark 6. The fact that, under the assumption (2.3) and (2.4) and the
temporary assumption (2),

sup |S,1(¢)|, sup|S.2(t)|, and sup|R,;(t)]|
teER teR teR

are O('22) ,with probability 1, is a direct consequence of Lemma (2.6), Lemma
(2.5), and Lemma (2.7) of Stute(6).
The uniform order of convergence of R,;(t) and R,3(t) need more work.

Lemma 3. Under the assumption (2.3) and (2.4) and the temporary as-
sumption (2),

v/n - sup |R,2(t)| = o(1) with probability 1.

teR

Proof. Let T be such that ¢(z) =0 for all z > T, for some T < 7. Notice
that sup,.; v(w) < oo, and sup, <1 SUP,¢(- oo .w) m}- < o00. Putting

M := sup, . ¥(w) SUP, <1 SUPye(-oo.u) (*1‘:7}(;)‘)'7» we get
y(w){v<u,v<w
Rl = 1 [ [ [ o) L 2 b v, )

///cpt(w (w){" <H”( ';)< ) . (du, dv, dw)|

< ///lcp(w {v <Hu( Q;)j w}IH,,(du,dv,d'w)
—H,(du, dv, d'w)[

= /_ |<p(w)|'y(w)/ —H—W/oo |H, (du, dv, dw)
—H,(du,dv, dw)|

< M- / |<p(w)|/ / »(du,dv, dw) — H,(du,dv,dw)|.
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By noticing that H, (oo, dv, dw) = H,(dv, dw) and I;l,,(oo,dv, dw) = H, (dv, dw),
we have .

/ |H.,(du, dv, dw) — H,(du, dv, dw)|

= |H,(dv,dw) — H,(dv,dw)| — |H,(v,dv, dw) fI (v, dv, dw)|
< |H.(dv,dw) — H,(dv,dw)| + |H, (v, dv, dw) — H, (v, dv, dw)).

By noticing also that the empirical (sub-) distributions H,,, H 0 and H 1 and
the (sub-) distributions H, H, and H! vanish at —oco, we have '

/_“' \H, (dv, dw) — H,(dv, dw)| = |Ha(w, dw) — H,(w,dw)|, and
/_ [H, (v, dv, dw) = Ho (v, dv, dw)| = [H, (v,0,dw) — H, (0,0, dw)]

Now use the simple algebraic identities b, c, — bc, — b,c+bec = (b, — b)(cn — ),
and

a,b,c, —a,bc — ab,c — abc + 2abc
= a, (b, — b)(c, — ¢) + (an — a)b(c, — ¢) + (a, — a)(b, — b)c

_ tofactor H,(w, dtg)——ﬁ,, (w,dw) and H, (v, w, dw)—H, (v, w, dw) as [HO(w)—
HOw)) - [H}(dw) — H'(dw)], and

H,(v) - [AS ~ H°)(w) - [Hy — B'|(dw) + [H, ~ H](v) - H'(w) - [, - H'](dw)
+H, - H](v) - [Hy — H)(w) - H' (dw),

respectively. Therefore, we finally have \/n -sup,.z |R.2(t)| is bounded by the
sum of I and II where

= My sl - %) [ eI} - £'|d), and
= M sup Hy(v) -V suplfif - H')(w)- [ eI - &')(dw)

+ M- rsulH, — H)w)-swp BOw) - [ o)} - A'l(dw)

vER weR

+ M VRsuplH, — H](0) - sup |12~ A7l(w): [ lotw)l i dw)

weR

Claim 1. The term I, with probability 1, is o(1).
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Proof of Claim 1. Notice that the sequence of random variables VLD
sup, cp |H? — H°|(w) converges in distribution. See, for example, Breiman(1).
Hence the sequence /n sup,, . , |H%—H°|(w) is tight(or mass preserving). See,
for example, Corollary 8. 11 of Breiman(1). Notice also that [ |¢(w)||H} —
H'|(dw) = o(1) as follows from the uniform convergence of H! to H'. The
proof of Claim 1 is completed.

The same reasoning as in Claim 1 applies to conclude that the second
term I, with probability 1, is o(1). This completes the proof of Lemma 3.

Lemma 4. Under the assumption (2.3) and (2.4) and the temporary as-
sumption (2),

/7 - sup |Ra3(t)| = o(1) with probability 1.

leR

Proof. Similar argument as in the last Lemma applies.

Proof of Lemma 2. The result directly follows from Remark 6, the last two
Lemmas, and Remark 5.
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