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LIMIT THEOREMS FOR HAWKES PROCESSES WITH

UNIFORM IMMIGRANTS

Youngsoo Seol

Abstract. Hawkes process is a self-exciting simple point process with
clustering effect whose jump rate depends on its entire past history. We
consider Hawkes processes with uniform immigrants which is a special
case of the Hawkes processes with renewal immigrants. We study the limit
theorems for Hawkes processes with uniform immigrants. In particular,
we obtain a law of large number, a central limit theorem, and a large
deviation principle.

1. Introduction and main results

1.1. Introduction

We start with a general description of Hawkes process introduced by
Brémaud and Massoulié [3].

Let N be a simple point process on R and let F−∞
t := σ(N(C), C ∈ B(R),

C ⊂ (−∞, t]) be an increasing family of σ-algebras. Any nonnegative F−∞
t -

progressively measurable process λt with

E
[

N(a, b]|F−∞
a

]

= E

[

∫ b

a

λsds|F
−∞
a

]

a. s. for all interval (a, b] is called an F−∞
t -intensity of N . We use the notation

Nt := N(0, t] to denote the number of points in the interval (0, t].
A general Hawkes process is a simple point process N admitting an F−∞

t -
intensity

λt := λ

(
∫ t

−∞

h(t− s)N(ds)

)

,

where λ(·) : R+ → R
+ is locally integrable and left continuous, h(·) : R+ → R

+

and we always assume that ‖h‖L1 =
∫∞

0 h(t)dt < ∞. Here
∫ t

−∞ h(t− s)N(ds)
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stands for
∫

(−∞,t) h(t−s)N(ds). We always assume thatN(−∞, 0] = 0, i.e., the

Hawkes process has empty history. In the literatures, h(·) and λ(·) are usually
referred to as exciting function and rate function respectively. The Hawkes
process is linear if λ(·) is linear and it is nonlinear otherwise. In general, the
model described above is non-Markovian since the future evolution of a self-
exciting simple point process is controlled by the timing of past events but
it is Markovian for a special case. Hawkes process has wide applications in
neuroscience, seismology, DNA modeling, finance and many other fields. It has
both self-exciting and clustering properties, which is very appealing to some
financial applications. In particular, self-exciting and clustering properties of
Hawkes process make it a viable candidate in modeling the correlated defaults
and evaluating the credit derivatives in finance, for example, see Errais et al. [7]
and Dassios and Zhao [5].

Hawkes [10] introduced the linear case, and the linear Hawkes process can be
studied via immigration-birth representation, see e.g. Hawkes and Oakes [11].
The stability, law of large numbers, central limit theorem, large deviations,
Bartlett spectrum etc. have all been studied and understood very well. Al-
most all of the applications of Hawkes process in the literatures consider exclu-
sively the linear case. Because of the lack of immigration-birth representation
and computational tractability, nonlinear Hawkes process is much less studied.
However, some efforts have already been made in this direction. Nonlinear case
was first introduced by Brémaud and Massoulié [3]. Recently, Zhu [23–25,27,28]
investigated several results for both linear and nonlinear model. The central
limit theorem was investigated in Zhu [23] and the large deviation principles
have been obtained in Zhu [27] and Zhu [27]. Limit theorems and rough frac-
tional diffusions as scaling limits for nearly unstable Hawkes processes was
obtained in Jaisson and Rosenbaum [13,14]. Zhu [25] have also studied for ap-
plications to financial mathematics. Some variations and extensions of Hawkes
process have been studied in Dassios and Zhao [5], Zhu [26], Karabash and
Zhu [15], Mehrdad and Zhu [16] and Ferro, Leiva and Møller [8]. In the recent
paper of Seol [18], he considers the arrival time τn, i.e., the inverse process of
Hawkes process, and studies the limit theorems (Law of Large numbers, Cen-
tral limit theorem and Large deviations) for τn. Recently, Seol [17] studied
for the law of large numbers, central limit theorem and invariance principles
for discrete Hawkes processes starting from empty history. Moderate deviation
principle for marked Hawkes processes was investigated in Seol [19] and limit
theorems for the compensator of Hawkes processes was studied by Seol [20].
In the literature, there have been studies extending and modifying the classi-
cal Hawkes process. First, The baseline intensity can be chosen to be time-
inhomogeneous (see Gao, Zhou, and Zhu [9]). Second, the immigrants can
arrive according to a Cox process with shot noise intensity, in which case the
model is known as the dynamic contagion model (see Dassios and Zhao [5]).
Third, the immigrants can arrive according to a renewal process instead of a
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Poisson process, which generalizes the classical Hawkes process. This is known
as the renewal Hawkes process (see Wheatley, Filimonov, and Sorrette [22]).

In this paper, we consider the Hawkes processes with uniform immigrants
which is a special case of the renewal Hawkes process, by assuming that the
immigrants arrive uniformly over time with intensity ν and an important sta-
tistics in many applications, and study the limit theorems for Hawkes processes
with uniform immigrants.

The structure of this paper is organized as follows. Some auxiliary results to
prove the main results are stated in Section 1.3 and the main results in Section
1.4. The proofs for the main theorems are contained in Section 2.

1.2. Preliminaries

In this section we are setting for main problems and introduce the classical
results. We start with the assumptions which we will use throughout the paper.

Assumption 1.

1. λ(z) = ν + z for some ν > 0,
2. ‖h‖L1 < 1 where ‖h‖L1 =

∫∞

0
h(t)dt < ∞,

3. tν ∈ N.

The first assumption of Assumption 1 says that λ is a linear and increasing
function and so Hawkes process has a very nice immigration birth representa-
tion (see Hawkes and Oakes [11], 1974). The second assumption says that in
the immigration birth representation, the total number of descendants of any
given immigrant is finite with probability 1, and the third assumption is needed
for the sake of simplicity due to the particular uniform immigrants assumption.

Here are some reviews for the results of Hawkes processes.

1.3. Limit theorems for Hawkes processes

The limit theorems for both linear and nonlinear Hawkes processes are well
known and studied by many authors.

If λ(·) is linear, say λ(z) = ν + z for some ν > 0, and ‖h‖L1 < 1, we can use
a very nice immigration-birth representation and the limit theorems are well
understood and more explicitly represented. Daley and Vere-Jones [4] proved
the law of large numbers for linear Hawkes process. The functional central
limit theorem for linear multivariate Hawkes process under certain assumptions
have been obtained by Bacry et al. [1]. Bordenave and Torrisi [2] proved that
if 0 < ‖h‖L1 < 1 and

∫∞

0 th(t)dt < ∞, then P(Nt/t ∈ ·) satisfies the large
deviation principle. Moderate deviation principle for linear continuous time
Hawkes processes is obtained by Zhu [24] and the limit theorems for linear
marked Hawkes processes are obtained in Zhu [16]. In particular, Daley and
Vere-Jones [4] proved the law of large numbers for linear Hawkes process as the
following.

Nt

t
→

ν

1− ‖h‖L1

as t → ∞.(1)
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The functional central limit theorem for linear multivariate Hawkes process
under certain assumptions have been obtained by Bacry et al. [1] and they
proved that

N·t − ·µt
√
t

→ σB(·) as t → ∞,

where B(·) is a standard Brownian motion and

µ =
ν

1− ‖h‖L1

and σ2 =
ν

(1− ‖h‖L1)3
.

The convergence used in above theorem is weak convergence on D[0, 1], the
space of càdlàg function on [0, 1], equipped with Skorokhod topology. Borde-
nave and Torrisi [2] proved that if 0 < ‖h‖L1 < 1 and

∫∞

0
th(t)dt < ∞, then

P(Nt/t ∈ ·) satisfies the large deviation principle with the good rate function
I(·), which means that for any closed set C ⊂ R,

lim sup
t→∞

1

t
logP(Nt/t ∈ C) ≤ − inf

x∈C
I(x),

and for any open set G ⊂ R,

lim inf
t→∞

1

t
logP(Nt/t ∈ G) ≥ − inf

x∈G
I(x),

where

I(x) =







xθx + ν − νx
ν+‖h‖L1x

if x ∈ (0,∞),

ν if x = 0,
+∞ if x ∈ (−∞, 0),

where θ = θx is the unique solution in (−∞, ‖h‖L1 − 1− log ‖h‖L1), of

E(eθS) =
x

ν + x‖h‖L1

, x > 0,(2)

where S in the above equation denotes the total number of descendants of an
immigrant, including the immigrant himself.

Remark 2. The rate function described above I(x) can be represented as more
explicit form. Note that (see [12] for details), for all θ ∈ (−∞, ‖h‖L1 − 1 −
log ‖h‖L1), E(eθS) satisfies

E(eθS) = eθe‖h‖L1(E(e
θS)−1),(3)

which implies that θx = log
(

x
ν+x‖h‖L1

)

−‖h‖L1

(

x
ν+x‖h‖L1

− 1
)

. Substituting

into the formula, we have

I(x) =











x log
(

x
ν+x‖h‖L1

)

− x+ ‖h‖L1x+ ν if x ∈ (0,∞),

ν if x = 0,
+∞ if x ∈ (−∞, 0).
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If λ(·) is nonlinear, the usual immigration-birth representation no longer
works and so nonlinear model is much harder to study. Brémaud and Mas-
soulié [3] proved that there exists a unique stationary version of nonlinear
hawkes processes under certain conditions and the convergence to equilibrium
of a non-stationary version. Central limit theorem is obtained in Zhu [23] and
Zhu [28] proved large deviation for a special case for nonlinear case when h(·)
is exponential or sums of exponentials. Zhu [27] proved a process-level, i.e.,
level-3 large deviation principle for nonlinear Hawkes processes for general h(·)
and hence by contradiction principle, the level-1 large deviation principle for
P(Nt/t ∈ ·).

1.4. Statement of the main results

This section states the main results of this paper. We obtain the law of
large numbers, central limit theorem and large deviation principle for the Nt

process. In particular, we discover that the limit for the law of large numbers is
the same as in the classical Hawkes process case, but the variance in the central
limit theorem and the rate function in the large deviation principle differ from
those for the classical Hawkes process.

We recall that the linear Hawkes process with empty history has the inten-
sity:

(4) λt = ν +

∫ t−

0

h(t− s)dNs,

where ν > 0 is the baseline intensity, h(·) is the exciting function.

In the intensity, there are two parts: ν and
∫ t−

0 h(t − s)dNs. The baseline
intensity ν can be interpreted as the external or exogenous factor, and the term
∫ t−

0
h(t − s)dNs can be interpreted as the internal or endogenous factor. The

latter explains the self-exciting phenomenon of the Hawkes process.
It is well known that a linear Hawkes process can be represented by using

a nice immigration-birth representation and the immigration-birth represen-
tation. The followings are general description of the tool. The immigrant
arrives according to a standard homogeneous Poisson process with constant
intensity ν > 0, and then each immigrant generates children according to a
Galton-Waston tree (see [11] for details). Let η be the number of children of
an immigrant and η has Poisson distribution with parameter ‖h‖L1. Then we
know that conditional on the number of the children of an immigrant, the time
that a child was born has probability density function

h(·)

‖h‖L1

.(5)

The immigration-birth representation says that Nt equals to the total number
of immigrants and their descendants up to time t. In our case, immigrants
arrive uniformly over time with intensity ν instead of Poisson with intensity ν.
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In the literature, there have been studies extending and modifying the clas-
sical Hawkes process. First, The baseline intensity can be chosen to be time-
inhomogeneous (see Gao, Zhou, and Zhu [9]). Second, the immigrants can
arrive according to a Cox process with shot noise intensity, in which case the
model is known as the dynamic contagion model (see Dassios and Zhao [5]).
Third, the immigrants can arrive according to a renewal process instead of a
Poisson process, which generalizes the classical Hawkes process. This is known
as the renewal Hawkes process (see Wheatley, Filimonov, and Sorrette [22]).

In this paper, we consider a special case of the renewal Hawkes process, by
assuming that the immigrants arrive uniformly over time with intensity ν, and
we compare our limit theorems with the ones for the classical Hawkes process.
To be more precise, the immigrants arrive at times:

(6)
i

ν
, i = 1, 2, 3, . . . .

Each immigrant generates descendants according to the immigration-birth rep-
resentation of the Hawkes process.

We first recall that tν ∈ N.
Then, we have the following decomposition:

(7) Nt =

νt
∑

i=1

Xi,

where Xi are independent, and Xi is the number of descendants of the ith
immigrant that arrives at time i

ν on the time interval [ iν ,
νt
ν ] plus the ith im-

migrant. Note that Xi has the same distribution as the number of descendants
of an immigrant, including the immigrant, that arrives at time 0 on the time
interval [0, νt−i

ν ]. The followings are our results.

Theorem 3 (Law of Large Numbers). Assume that Assumption 1 is satisfied.

Then we have

(8)
Nt

t
→

ν

1− ‖h‖L1

,

in probability as t → ∞.

Next, let us state the central limit theorem.

Theorem 4 (Central Limit Theorem). Assume that Assumption 1 is satisfied

and

(9) lim
t→∞

1
√
t

∫ t

0

∫ ∞

u

h(s)dsdu = 0.

Then, we have

(10)
Nt −

νt
1−‖h‖L1√
t

→ N

(

0,
ν‖h‖L1

(1− ‖h‖L1)3

)

,

in distribution as t → ∞.
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Finally, let us show the large deviation principle.

Theorem 5 (Large Deviation Principle). Assume that Assumption 1 is satis-

fied. Then we say that P(Nt/t ∈ ·) satisfies a large deviation principle with the

rate function

(11) I(x) =

{

(x− ν) log
(

x−ν
x‖h‖L1

)

− x+ ν + x‖h‖L1 if x ≥ ν,

+∞ otherwise.

2. Proofs of the main results

In this section, we give the proofs of the main theorems.

2.1. Law of large numbers

Proof of Theorem 3. Let Yi be the number of descendants of ith immigrant,
including the immigrant, that arrives at time i

ν on the time interval [ iν ,∞).
Then Yi are i.i.d. with moment generating function:

(12) x(θ) := E[eθYi ]

satisfies the equation (See [12] for details)

(13) x(θ) = eθ+(x(θ)−1)‖h‖L1

for θ ≤ θc = ‖h‖L1 − 1− log ‖h‖L1 and it is infinity otherwise.
Thus, from the moment generating function, Yi has the mean

(14) E[Yi] =
1

1− ‖h‖L1

.

The strong law of large numbers shows that

(15)
1

t

νt
∑

i=1

Yi →
ν

1− ‖h‖L1

,

a.s. as t → ∞.
On the other hand,

(16) Nt =

νt
∑

i=1

Xi ≤
νt
∑

i=1

Yi,

and we can compute that

(17) E

[

νt
∑

i=1

Yi −
νt
∑

i=1

Xi

]

=

νt
∑

i=1

E[Yi −Xi],

and

(18) E[Xi] = f

(

νt− i

ν

)

,
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where f(t) satisfies the renewal equation:

(19) f(t) = 1 +

∫ t

0

h(t− s)f(s)ds.

This can be derived from the fact that for any θ ≤ ‖h‖L1 − 1− log ‖h‖L1,

(20) x(t; θ) = E[eθSt ],

where St is distributed as the number of descendants of an immigrant, including
the immigrant, that arrives at time 0 on the time interval [0, t], satisfies the
equation

(21) x(t; θ) = eθ+
∫ t
0
(x(s;θ)−1)h(t−s)ds.

Moreover, we notice that

(22) E[Yi] = f(∞).

Therefore,

E

[

νt
∑

i=1

Yi −
νt
∑

i=1

Xi

]

=

νt
∑

i=1

[

f(∞)− f

(

νt− i

ν

)]

(23)

=

νt−1
∑

i=0

[

f(∞)− f

(

i

ν

)]

.

Since limt→∞ f(t) = f(∞), we conclude that

(24) lim
t→∞

1

t
E

[

νt
∑

i=1

Yi −
νt
∑

i=1

Xi

]

= 0.

By Markov’s inequality, we have proved that

(25)
Nt

t
=

1

t

νt
∑

i=1

Xi →
ν

1− ‖h‖L1

,

in probability as t → ∞. The proof of Theorem 3 is completed. �

2.2. Central limit theorems

Proof of Theorem 4. We recall that for any θ ≤ θc,

(26) E[eθYi ] = x(θ) = eθ+(x(θ)−1)‖h‖L1 .

We can compute that

(27) E[Y 2
i ] = x′′(0),

and

(28) x′(θ) = (1 + x′(θ)‖h‖L1)x(θ),

and

(29) x′′(θ) = x′′(θ)‖h‖L1x(θ) + (1 + x′(θ)‖h‖L1)x′(θ).
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Note that x(0) = 1 and thus x′(0) = 1
1−‖h‖L1

and

(30) x′′(0) =
1

(1− ‖h‖L1)3
.

Hence,

(31) Var(Yi) = x′′(0)− (x′(0))2 =
‖h‖L1

(1 − ‖h‖L1)3
.

By the classical central limit theorem for i.i.d. random variables,

(32)
1
√
t

[

νt
∑

i=1

Yi −
νt

1− ‖h‖L1

]

→ N

(

0,
ν‖h‖L1

(1− ‖h‖L1)3

)

,

in distribution as t → ∞. The conclusion follows if

(33)
1
√
t
E

[

νt
∑

i=1

Yi −
νt
∑

i=1

Xi

]

→ 0

in probability as t → ∞. That is equivalent to

(34) lim
t→∞

1
√
t

νt−1
∑

i=0

[

f(∞)− f

(

i

ν

)]

= 0.

By the definition of f(t):

(35) f(t) = 1 +

∫ t

0

h(t− s)f(s)ds,

and by f(∞) = 1
1−‖h‖L1

, we can compute that

(36) f(∞)− f(t) =

∫∞

t
h(s)ds

1− ‖h‖L1

+

∫ t

0

h(t− s)(f(∞)− f(s))ds,

and by using the equation (36), we get
∫ νt

0

[f(∞)− f(s)]ds(37)

=

∫ νt

0

∫∞

u
h(s)dsdu

1− ‖h‖L1

+

∫ νt

0

∫ s

0

h(s− u)(f(∞)− f(u))duds

=

∫ νt

0

∫∞

u h(s)dsdu

1− ‖h‖L1

+

∫ νt

0

[

∫ νt

u

h(s− u)ds
]

(f(∞)− f(u))du

≤

∫ νt

0

∫∞

u h(s)dsdu

1− ‖h‖L1

+ ‖h‖L1

∫ νt

0

(f(∞)− f(u))du,

which implies that

(38)

∫ νt

0

[f(∞)− f(s)]ds ∼

∫ νt

0

∫∞

u
h(s)dsdu

(1 − ‖h‖L1)2
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as t → ∞. The equation (38) implies that

(39) lim
t→∞

1
√
t

∫ νt

0

f(∞)− f(s)ds = lim
t→∞

1
√
t

∫ νt

0

∫∞

u
h(s)dsdu

(1− ‖h‖L1)2
= 0.

By monotonicity of f(∞)− f(t) as a function of t, we get

(40) lim
t→∞

1
√
t

νt−1
∑

i=0

[

f(∞)− f

(

i

ν

)]

= 0.

This completes the proof of Theorem 4. �

2.3. Large deviations principle

We start with the basic definitions in large deviations theory (e.g. See Dembo
and Zeitouni [6] or Varadhan [21] for detail). Recall that a sequence (φn)n∈N of
probability measures on a topological space X satisfies the large deviation prin-
ciple with rate function I : X → R if I is non-negative, lower semi-continuous
and for any measurable set B, we have

− inf
x∈B◦

I(x) ≤ lim inf
n→∞

1

n
logφn(B) ≤ lim sup

n→∞

1

n
logφn(B) ≤ − inf

x∈B̄
I(x),

where B◦ is the interior of B and B̄ is its closure.

Proof of Theorem 5. For any θ ≤ θc = ‖h‖L1 − 1− log ‖h‖L1, we can compute
that

(41) E[eθNt ] =

νt
∏

i=1

E[eθXi ] =

νt−1
∏

i=0

x

(

i

ν
; θ

)

,

where x(t; θ) is defined in Equation (20). Therefore, we have

(42) lim
t→∞

1

t
logE[eθNt ] = ν log x(∞; θ) = ν log x(θ),

where x(θ) satisfies the equation

(43) x(θ) = eθ+(x(θ)−1)‖h‖L1 .

Note that ν log x(θ) is differentiable in θ for any θ < θc, and its derivative is
given by

(44) ν
x′(θ)

x(θ)
→ ∞

as θ → θc. This can be seen from the fact that

(45) x′(θ) = (1 + x′(θ)‖h‖L1)x(θ),

and at θc = ‖h‖L1 − 1− log ‖h‖L1,

(46) x(θc) =
1

‖h‖L1

.
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We also know that (See [12] for details) for θ > θc,

(47) x(θ) = E[eθYi ] = ∞.

Hence we proved the essential smoothness for Gärtner-Ellis theorem (see [2]
for details), and by the Gärtner-Ellis theorem, P(Nt/t ∈ ·) satisfies a large
deviation principle with the rate function

(48) I(x) = sup
θ∈R

{θx− ν log x(θ)}.

Note that Nt

t ≥ ν since the number of immigrants is νt. Therefore I(x) = ∞
for any x < ν. Now, we assume that x ≥ ν. At optimality in the Legendre
transform expression above

(49) x = ν
x′(θ)

x(θ)
= ν(1 + x′(θ)‖h‖L1),

which implies that

(50) x′(θ) =
x
ν − 1

‖h‖L1

,

which implies that

(51) x(θ) =
x′(θ)

1 + x′(θ)‖h‖L1

=
x− ν

x‖h‖L1

.

Therefore this optimal θ is given by

(52) θ = log x(θ)− (x(θ) − 1)‖h‖L1 = log

(

x− ν

x‖h‖L1

)

−
x− ν

x
+ ‖h‖L1

and hence we conclude that for any x ≥ ν,

(53) I(x) = x log

(

x− ν

x‖h‖L1

)

− x+ ν + x‖h‖L1 − ν log

(

x− ν

x‖h‖L1

)

.

Hence, we have proved the desired result. �
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