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THE UNIFORM CLT FOR MARTINGALE DIFFERENCE
ARRAYS UNDER THE UNIFORMLY

INTEGRABLE ENTROPY

Jongsig Bae, Doobae Jun, and Shlomo Levental

Abstract. In this paper we consider the uniform central limit theorem
for a martingale-difference array of a function-indexed stochastic process
under the uniformly integrable entropy condition. We prove a maximal
inequality for martingale-difference arrays of process indexed by a class
of measurable functions by a method as Ziegler [19] did for triangular
arrays of row wise independent process. The main tools are the Freedman
inequality for the martingale-difference and a sub-Gaussian inequality
based on the restricted chaining. The results of present paper generalizes
those of Ziegler [19] and other results of independent problems. The
results also generalizes those of Bae and Choi [3] to martingale-difference
array of a function-indexed stochastic process. Finally, an application to
classes of functions changing with n is given.

1. Introduction

In the present paper we deal with the uniform central limit theorem for a
specific function-indexed process based on a martingale-difference array under
the assumption of uniformly integrable entropy.

Several extensions from the classical Lindeberg-Feller models are possible.
One direction is to consider the process version of the central limit theorem
pioneered by Donsker [6]. The index set is evolved from the real line to a
function class which can be considered as a general metric space. The so called
function-indexed process has turned out to be a natural extension keeping in
mind in applications in random fields. See, for example, Adler [1] for general
Gaussian random fields, Bass for set-indexed processes, and Dudley [8] for
function-indexed processes.

The other direction is to remove independence assumption by considering
problems such as martingales, stationary Markov chains and various types of
mixing sequences. Numerous development on this points have been made since
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1970’s. See, for example, Gordin and Lifsic [12], Bae and Levental [4], and
Doukhan et al. [7].

When one deals with the uniform CLT for a function-indexed process, brack-
eting method and random entropy method are commonly used in the literature.
Under one of these assumptions, most widely used tool is the chaining argu-
ment. The last argument is originated, to the best of our knowledge, from
Kolmogorov. See for example Kolmogorov’s lemma in probability texts. For
the use of chaining argument for the set-indexed process, see Bass [5]. A more
delicate chaining argument with stratifications is employed in Ossiander [14].
Most recent texts on these topics are Dudley [9] and van de Geer [17]. The
present paper is motivated by Bae [2] and Ziegler [19]. The first paper deals
with the uniform CLT for a sequence of stationary martingale difference under
the assumption of bracketing entropy and the second one deals with functional
CLTs for row wise independent triangular arrays of function-indexed processes
under the uniformly integrable entropy condition.

In the present paper we do not attempt to use the chaining argument di-
rectly in developing the uniform CLT, but we prove a maximal inequality that
will give the uniform CLT by an approach as Ziegler [19] employed for triangu-
lar arrays of row wise independent processes. We believe that our approach to
the martingale problem is substantially different from those of Ziegler’s inde-
pendent problem. For instance, the symmetrization argument is not work for
a dependent process.

Consider an array of sub-σ-fields {Enj : 0 ≤ j ≤ j(n), n ∈ N} on a given
probability space (Ω, E , P ) satisfying En0 ⊆ En1 ⊆ · · · ⊆ Enj(n) for n ∈ N. Given
a collection F of real-valued functions defined on a measurable space (X,X ), we
consider an array {Vnj(f) : j ≤ j(n), n ∈ N, f ∈ F} of martingale-difference of
L2-process indexed by F with respect to the σ-fields {Enj : 0 ≤ j ≤ n, n ∈ N}.
By that we mean that, for each f ∈ F , {Vnj(f) : j ≤ j(n), n ∈ N} is an
array of random variables satisfying E(Vnj(f)|En,j−1) = 0 and Vnj(f) is Enj-
measurable.

We simply denote En,j−1f to mean E(f |En,j−1), the conditional expectation
of the random element f given the σ-field En,j−1. Define a conditional variance
process vnj(f) := En,j−1(Vnj(f))2 for f ∈ F . Notice that vnj(f) is an En,j−1-
measurable random variable.

Given a class F of measurable functions defined on a measurable space
(X,X ), the covering number N(ε,F , || · ||), simply denote N(ε) when there is
no risk of ambiguity, is the minimum number of balls {g : ||g−h|| < ε} of radius
ε needed to cover F . Let F be an envelope of F . That is, F is a measurable
function from X to [0,∞) such that supf∈F |f(x)| ≤ F (x) for all x ∈ X. Let
M(X, F ) be the set of all measures γ on (X,X ) with γ(F 2) :=

∫
X

F 2dγ < ∞.

Given random measures µn on (X,X ), we define

d(2)
µn

(f, g) :=
[
µn(f − g)2

]1/2
.
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Say that F has uniformly integrable entropy with respect to L2-norm if
∫ ∞

0

sup
γ∈M(X,F )

[
ln N

(
ε
[
γ(F 2)

]1/2
,F , d(2)

γ

)]1/2

dε < ∞,

where d
(2)
γ (f, g) :=

[∫
X

(f − g)2dγ
]1/2

. When the class F has uniformly inte-
grable entropy, (F , d

(2)
γ ) is totally bounded for any measure γ. Many important

classes of functions, such as VC graph classes, have uniformly integrable en-
tropy. See Section 2.6 of Van der Vaart and Wellner [18].

The one dimensional CLT for a martingale-difference array deals with con-
vergence in distribution to a normal random variable of row sums of the
martingale-difference array. See Theorem 1 in Chapter 8 of Pollard [15] among
others.

The goal of this paper is to establish a uniform CLT for an array of martin-
gale-difference of L2-process indexed by F under the uniformly integrable en-
tropy conditions by developing a maximal inequality as Ziegler [19] did for
a triangular array of row wise independent process. The main tools are the
Freedman inequality for the martingale-difference and a restricted chaining
argument. Throughout the paper events are identified with their indicator
functions and E∗ denotes the upper expectation with respect to the outer
probability P ∗.

2. The main results

Consider a process {Sn(f) : f ∈ F} defined by

(1) Sn(f) :=
∑

j≤j(n)

Vnj(f) for f ∈ F .

Define

(2) σ2
n(f, g) :=

∑

j≤j(n)

En,j−1 [Vnj(f)− Vnj(g)]2 for all f, g ∈ F .

We are ready to state a maximal inequality for the martingale-difference
array.

Theorem 1. Let {Vnj(f) : j ≤ j(n), n ∈ N, f ∈ F} be a martingale-difference
array of L2-process indexed by a class F of measurable functions with an enve-
lope Fon a measurable space (X,X ). Suppose that F has uniformly integrable
entropy. Let µn, n ∈ N, be random measures on (X,X ) such that

(3) P ∗
{

sup
f,g∈F

σ2
n(f, g)

(d(2)
µn (f, g))2

≥ L

}
→ 0, as n →∞ for a constant L.

Suppose

Ln(δ) :=
6
δ

∑

j≤j(n)

E
[
(Vnj(F ))2{Vnj(F ) > δ}] → 0 for every δ > 0.
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Then given ε > 0 and γ > 0 there exists an η > 0 for which

lim sup
n→∞

P ∗
(

sup
d
(2)
µn (f,g)≤η

|Sn(f)− Sn(g)| > 5γ

)
≤ 3ε.

Establishing a uniform CLT essentially means showing that L(Sn(f) : f ∈
F) → L(Z(f) : f ∈ F), where the processes are indexed by F and are consid-
ered as random elements of the Banach space

B(F) :=

{
z : F → R : ||z||F := sup

f∈F
|z(f)| < ∞

}
,

the space of the bounded real-valued functions on F , taken with the sup norm.
The limiting process Z = (Z(f) : f ∈ F) is a Gaussian process whose sample
paths are contained in

UB(F , ρ) := {z ∈ B(F) : z is uniformly continuous with respect to ρ} ,

where ρ is a metric on F . Notice that (B(F), || · ||F ) is a Banach space and
UB(F , ρ) is a closed subspace of (B(F), || · ||F ) and hence is a Banach space. In
particular UB(F , ρ) is separable if and only if (F , ρ) is totally bounded. Write

d(f, g) := d(2)
µ (f, g) :=

[∫

X

(f − g)2 dµ

]1/2

,

where µ is a fixed measure on (X,X ) with µ(F 2) :=
∫
X

F 2dµ < ∞. We equip
the space F with the pseudometric d so that (F , d) is totally bounded.

We use the following definition of weak convergence which is originally due
to Hoffmann-Jφrgensen [13].

Definition 1. A sequence of B(F)-valued random functions {Yn : n ≥ 1}
converges in law to a B(F)-valued Borel measurable random function Y whose
law concentrates on a separable subset of B(F), denoted Yn ⇒ Y , if

Eg(Y ) = lim
n→∞

E∗g(Yn),∀g ∈ C(B(F), || · ||F ),

where C(B(F), || · ||F ) is the set of all bounded, continuous functions from
(B(F), || · ||F ) into R.

We are ready to state the uniform CLT for a martingale difference array
under the uniformly integrable entropy condition.

Theorem 2. Let {Vnj(f) : j ≤ j(n), n ∈ N, f ∈ F} be an array of martingale-
difference of L2-process indexed by a class F of measurable functions with an
envelope Fon a measurable space (X,X ). Suppose that F has uniformly inte-
grable entropy. Assume that there exists a constant L such that

P ∗
{

sup
f,g∈F

σ2
n(f, g)

d2(f, g)
≥ L

}
→ 0, as n →∞.(4)
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Suppose that, as n →∞,

(5)
∑

j≤j(n)

vnj(f) →P σ2(f) for each f ∈ F ,

where σ2(f) are positive constants; and for every ε > 0,

(6)
∑

j≤j(n)

En,j−1((Vnj(F ))2{Vnj(F ) > ε}) →P 0.

Suppose there exists a Gaussian process Z such that finite dimensional distri-
butions of Sn converge to those of Z. Then

Sn ⇒ Z as random elements of B(F).

The limiting process Z = (Z(f) : f ∈ F) is mean zero Gaussian with covariance
structure EZ(f)Z(g) and the sample paths of Z are belong to UB(F , d).

Proof. The result is a consequence of Theorem 1 and assumptions on the con-
vergence of finite dimensional distributions of Sn to those of Z by applying
Theorem 10. 2 of Pollard [16] to the process (Sn(f) : f ∈ F) indexed by the
totally bounded pseudometric space (F , d). ¤

Remark 1. (1) A sufficient condition to the Lipsuitz condition (4) is that

E∗ sup
f,g∈F

σ2
n(f, g)

d2(f, g)
converges.

(2) The condition (5) on the conditional variances and the Lindeberg con-
dition (6) are essential in the sense that the parallel conditions are required in
the one dimensional CLT.

We regain the uniform CLT for a sequence of martingale-difference in Bae
and Choi [3] by applying Theorem 2 with Vnj(f) = n−1/2Dj(f).

Corollary 1 (Theorem 1 of Bae and Choi [3]). Let F be a class of measurable
functions on a measurable space (X,X ). Let {Dj(f) : 1 ≤ j ≤ n, n ∈ N, f ∈ F}
be a sequence of martingale-difference of L2-process indexed by a class F with
respect to an increasing sequence of σ-fields {Ej : 0 ≤ j ≤ n, n ∈ N}. Suppose
that F has uniformly integrable entropy. Assume that there exists a constant
L such that

P ∗



 sup

f,g∈F

n∑

j=1

Ej−1(Dj(f)−Dj(g))2

nd2(f, g)
≥ L



 → 0 as n →∞.

Suppose that, as n →∞,

1
n

n∑

j=1

Ej−1(Dj(f))2 →P σ2(f) for each f ∈ F
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where σ2(f) are positive constants; and for every ε > 0

1
n

n∑

j=1

Ej−1((Dj(F ))2{Dj(F ) > ε
√

n}) →P 0.

Suppose there exists a Gaussian process Z such that the finite dimensional
distributions of Sn converge to those of Z. Then


 1√

n

n∑

j=1

Dj(f) : f ∈ F

 ⇒ (Z(f) : f ∈ F)

as random elements of B(F). The limiting process Z = (Z(f) : f ∈ F) is mean
zero Gaussian with covariance structure EZ(f)Z(g) and the sample paths of Z
belong to UB(F , d).

3. Proof of the maximal inequality

We will use a modified version of Freedman inequality, a maximal inequality
that satisfy a Bernstein-type bound, and a restricted chaining argument. For a
random variable ξ, we use the notation ||ξ||∞ to denote the essential supremum
of |ξ|. We also use the notation ¹ to mean the left hand side is bounded by a
constant times the right hand side.

Lemma 1. Let (Dj)1≤j≤n be a martingale-difference with respect to increasing
σ-fields (Ej)0≤j≤n. That is, E(Dj |Ej−1) = 0, j = 1, . . . , n. Suppose that
||Dj ||∞ ≤ M for a constant M , j = 1, . . . , n. Let τ ≤ n be a stopping time
relative to (Ei) that satisfies ||∑τ

j=1 E(D2
j |Ej−1)||∞ ≤ V for a constant V . If

0 ≤ η ≤ V/2M , then

P




∣∣∣∣∣∣

τ∑

j=1

Dj

∣∣∣∣∣∣
> η


 ≤ 2 · exp

{
− η2

3V

}
.

Proof. Since the upper bound for the tail probability P (|∑τ
j=1 Dj | > η) in

Freedman inequality, see Proposition 2.1 of Freedman [11], is given by 2 ·
exp[−η2/2(V + Mη)] for η ≥ 0, the result directly follows from the restric-
tion 0 ≤ η ≤ V/2M . ¤

Lemma 2. Let X1, . . . , XN be random variables that satisfy the tail bound

P (|Xi| > y) ≤ 2 · exp
[
−1

2
y2

V + My

]
for every y > 0 and for all i.

Then,

E

(
max

1≤i≤N
|Xi|

)
¹

(
M log(1 + N) +

√
V

√
log(1 + N)

)
.

Proof. See Lemma 2.2.10 in [18]. ¤
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We will prove the theorem by using the usual chaining argument. For this
purpose we introduce some more notations. Define a covering integral

J(δ) =
∫ δ

0

[
2 ln

N2(ε)
ε

]1/2

dε.

Notice that the uniformly integrable entropy condition implies the finiteness of
covering integral J(·).
Lemma 3. Suppose the metric space (F , d) has a finite covering integral J(·).
Let {Z(f) : f ∈ F} be a stochastic process that satisfies the exponential inequal-
ity, for a constant D,

P {|Z(f)− Z(g)| > η} ≤ 2 · exp
{
− η2

2D2δ2

}
if d(f, g) ≤ δ

for every η > 0 and δ > 0 with δ ≥ αη2, for some constant α. Let F(α) be a
α-net(containing N(α) points) for F ; let fα be the closest point in F(α) to f .
Then given ε > 0 and γ > 0, there exists δ > 0, depending on ε, γ, and J(·),
for which

P

{
sup

d(f,g)<δ

|Z(f)− Z(g)| > 5γ

}
≤ 2ε + P

{
sup
F
|Z(f)− Z(fα)| > γ

}

provided α ≤ 1
3ε and γ ≤ 144 and J(α) ≤ min{γ/12D, 3/D}.

Proof. See Theorem 26, p. 169 in [15]. ¤

We introduce the following truncation argument. For δ > 0, let

f (δ)(·) =





δ if f(·) > δ
f(·) if |f(·)| ≤ δ
−δ if f(·) < −δ,

so that f (δ)(·) is a truncation of f(·) at the level δ. For fixed δ > 0, for j ≤
j(n), and n ∈ N, we simplify the notation by writing Vnj(f (δ)) := Vnj(f (δ))−
En,j−1Vnj(f (δ)), and define

S(δ)
n (f) =

∑

j≤j(n)

Vnj(f (δ)) for f ∈ F .

Proposition 1. Let {Vnj(f) : j ≤ j(n), n ∈ N, f ∈ F} be a martingale-
difference array of L2-process indexed by a class F of measurable functions with
an envelope F on a measurable space (X,X ). Suppose that F has uniformly
integrable entropy. Let µn, n ∈ N, be random measures on (X,X ) and let
τn ≤ n be a sequence of stopping times relative to the σ-fields {Enj : 0 ≤ j ≤
j(n), n ∈ N} that satisfies almost surely

σ2
τn

(f, g) ≤ L(d(2)
µn

(f, g))2 for f, g ∈ F and for a constant L.
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Then given ε > 0 and γ > 0 there exists a η > 0 such that for every n ∈ N,

P ∗
{

sup
d
(2)
µn (f,g)≤η

∣∣∣S(δ)
τn

(f)− S(δ)
τn

(g)
∣∣∣ > 5γ

}
< 3ε + P (τn 6= n).

Proof. Let δ > 0. Let f, g ∈ F be fixed. Then the martingale-difference
Dj := Vnj(f (δ))−Vnj(g(δ)) have an upper bound M := 4δ. On the almost sure

event
{

σ2
τn

(f, g) ≤ L(d(2)
µn (f, g))2

}
, taking V := 5L(d(2)

µn (f, g))2, we observe that

∑

j≤τn

En,j−1

[
Vnj(f (δ))− Vnj(g(δ))

]2

≤
∑

j≤τn

En,j−1 [Vnj(f)− Vnj(g)]2

= σ2
τn

(f, g) ≤ L(d(2)
µn

(f, g))2 ≤ V.

Write 2D2 = 15L and take α2 = 60δ
D2 . By Lemma 1 we have that, if δ ≥ αη1/2

then

P
(∣∣∣S(δ)

τn
(f)− S(δ)

τn
(g)

∣∣∣ > η
)
≤ 2 exp

{
− η2

2D2δ2

}
for d

(2)
µn (f, g) ≤ δ.

Now let ε > 0 and γ > 0. Then, by Lemma 3, there exists a δ > 0 for which

P

{
sup

d
(2)
µn (f,g)≤δ

∣∣∣S(δ)
τn

(f)− S(δ)
τn

(g)
∣∣∣ > 5γ

}

≤ 2ε + P

{
sup
F

∣∣∣S(δ)
τn

(f)− S(δ)
τn

(fα)
∣∣∣ > γ

}
,

provided α ≤ 1
3ε and γ ≤ 144 and J(α) ≤ min{γ/12D, 3/D}. Write H :=

{f − fα : f ∈ F}. We assume without loss of generality that En,j−1h = 0 for
every h ∈ H. Otherwise subtract and add the term En,j−1h as above.

Claim 1. P
{

suph∈H
∣∣∣S(δ)

τn (h)
∣∣∣ > γ

}
< ε.

Introduce a random semimetric dn defined as

d2
n(g, h) :=

∑

j≤j(n)

(Vnj(g)− Vnj(h))2 for g, h ∈ F .

Given α > 0, find functions g1, . . . , gM in H ⊆ H0 ªH−1 (see Bae [2]), where
M := N(α) := N(α,H, dn) for which

min
1≤i≤M

[
d2

n(h− gi)
]1/2 ≤ α for every h ∈ H.

Recall
S(δ)

n (h) :=
∑

j≤j(n)

Vnj(h).
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For each g and h, |S(δ)
n (h)| ≤ [

d2
n(h, g)

]1/2 + |S(δ)
n (g)|. For h ∈ H set g equal

to the gi that minimizes
[
dn(h− gi)2

]1/2. Then

|S(δ)
n (h)| ≤ α + |S(δ)

n (gi)|
whence

sup
h∈H

|S(δ)
n (h)| ≤ α + max

1≤i≤M
|S(δ)

n (gi)|.

Therefore

(7) P

{
sup
h∈H

|S(δ)
n (h)| > 2α

}
≤ P

{
max

1≤i≤M
|S(δ)

n (gi)| > α

}
.

Now, applying (7) for the second inequality, we see that

P

{
sup
h∈H

|S(δ)
τn

(h)| > 2α

}
≤ P

{
max

1≤i≤M
|S(δ)

τn
(gi)| > α

}
(8)

+P {τn 6= n} .

For each i = 1, . . . , N(α), ||gi||∞ ≤ 4δ and ||∑τn

j=1 Ej−1g
2
i ||∞ ≤ 15Lδ2. Ap-

plying Freedman inequality, Proposition 2.1 of Freedman [11],

P
(∣∣∣S(δ)

τn
(gi)

∣∣∣ > y
)
≤ 2 exp

[
−1

2
y2

15Lδ2 + 4δy

]

for every y > 0. Therefore applying Markov inequality followed by Lemma 2
we have that

P

{
sup
h∈H

∣∣∣S(δ)
τn

(h)
∣∣∣ > 2γ

}
− P {τn 6= n}

≤ 1
γ

E

{
max

1≤i≤N(α)

∣∣∣S(δ)
τn

(gi)
∣∣∣
}

¹
(
4δ log(1 + N(α)) +

√
15Lδ2

√
log(1 + N(α))

)

¹
∫ δ

0

[ln N (ε,F , dn)]1/2
dε

¹
∫ Cδ

0

sup
γ∈M(X,F )

[
ln N

(
ε
[
γ(F 2)

]1/2
,F , d(2)

γ

)]1/2

dε

for a constant C. Now due to the uniformly integrable entropy condition we
can choose δ > 0 so that the last integral is less than ε. The proof of Claim 1
is completed. Hence the proof of Proposition 1 is completed. ¤

We are now ready to finish the proof of Theorem 1.

Proof. Since {Vnj(f), Enj} is a martingale-difference, for any δ > 0, using the
identity

|En,j−1(Vnj(f){|Vnj(f)| > δ})| = |En,j−1(Vnj(f){|Vnj(f)| ≤ δ})|,
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we have

sup
f∈F

|Sn(f)− S(δ)
n (f)| ≤ 1

δ

∑

j≤j(n)

(Vnj(f))2{Vnj(f) > δ}

+
2
δ

∑

j≤j(n)

En,j−1((Vnj(f))2{Vnj(f) > δ}).

For any δ > 0, and 0 < η ≤ (Lδ2

12 )1/2, we get

sup
σn(f,g)≤η

|Sn(f)− Sn(g)|

≤ sup
σn(f,g)≤η

|S(δ)
n (f)− S(δ)

n (g)|+ 2 sup
f∈F

|Sn(f)− S(δ)
n (f)|

≤ sup
σn(f,g)≤η

|S(δ)
n (f)− S(δ)

n (g)|+ 2
δ

∑

j≤j(n)

(Vnj(f))2{Vnj(f) > δ}

+
4
δ

∑

j≤j(n)

En,j−1(Vnj(f))2{Vnj(f) > δ}.

Therefore we have

E∗ sup
σn(f,g)≤η

|Sn(f)− Sn(g)| ≤ E∗ sup
σn(f,g)≤η

|S(δ)
n (f)− S(δ)

n (g)|+ Ln(δ).

Define a stopping time τn by, for n ≥ 1

τn := n ∧max

{
k ≥ 0 : sup

f,g∈F

σ2
k(f, g)

(d(2)
µn (f, g))2

< L

}
.

Being the random variables σ2
k(f, g) predictable, we see that τn is a stopping

time. Notice that P ∗(τn < n) → 0 as n →∞. Therefore, it is enough to prove
our theorem for the stopped process {Sτn}.
Claim 2. Given ε > 0 and γ > 0 there exists a η > 0 such that

lim sup
n→∞

P ∗
{

sup
d
(2)
µn (f,g)≤η

|S(δ)
τn

(f)− S(δ)
τn

(g)| > 5γ

}
< 3ε.

The Claim follows from Proposition 1. The proof of Theorem 1 is completed.
¤

4. A sequential empirical process for martingale-difference

In this section, we consider a uniform CLT for classes of functions changing
with n. See the Section 2.11.3 of Van der Vaart and Wellner [18]. Let x 7→
fn,t(x) be functions from X to R indexed by n ∈ N and a fixed, totally bounded
semimetric space (T, ρ).

Consider for each n ∈ N, let Fn = {fn,t : t ∈ T} ⊆ H0 ªH−1 with envelope
functions Fn. Write as before ξj := T j(X), V0 := T 0(X)(= X). From our setup
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it follows that for each n ∈ N and t ∈ T , {fn,t(ξj),Mj} forms a martingale-
difference arrays. Consider the stochastic process {Znfn,t : t ∈ T} defined
by

(9) Zn(fn,t) =
1√
n

n∑

j=1

fn,t(ξj) for t ∈ T .

Therefore this situation fits the general set-up of martingale-difference arrays
by setting

Vn,j(t) =
1√
n

fn,t(ξj)

and
En,j = Mj .

Given envelope functions Fn, assume that P ∗F 2
n = O(1) and P ∗F 2

n{Fn >
η
√

n} → 0 for every η > 0. Then we get the following central limit theorem.

Theorem 3. For each n ∈ N, let Fn = {fn,t : t ∈ T} ⊆ H0 ªH−1 be a class
of measurable functions indexed by a totally bounded semimetric space (T, ρ).
Suppose that

sup
P

∫ δn

0

[ln N(ε||Fn||P,2,Fn, L2(P ))]1/2dε → 0 for every δn ↓ 0.

Suppose there exists a constant L > 0 such that

(10) P ∗


 sup

s,t∈T

n∑

j=1

Ej−1[fn,s(ξj)− fn,t(ξj)]2

nρ2(s, t)
≥ L


 → 0.

Then {Znfn,t : t ∈ T} converges in distribution to a tight Gaussian process
as random elements of B(T ) provided the sequence of covariance functions
Efn,sfn,t − Efn,sEfn,t converges pointwise on T × T

Remark 2. In order to see that our result generalizes that of IID problem,
see Theorem 2.11.22 of Van der Vaart and Wellner [18], let ξ be a random
variable on a probability space (S,B, P0), and let {ξi, i ≥ 1} be a sequence of
independent copies of ξ. Suppose that E0fn,t(ξ) = 0 for all t ∈ T . Consider
P = (P0)Z so that (Xi) are IID. In this case we see that

Ej−1[fn,s(ξj)− fn,t(ξj)]2 = E0[fn,t(ξ)− fn,t(ξ)]2.

So the condition (10) is equivalent to the condition

sup
ρ(s,t)<δn

P (fn,s − fnt)2 → 0 for every δn ↓ 0.

Therefore, Theorem 2.11.22 of Van der Vaart and Wellner [18] will be a special
case of Theorem 3.
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