• Title/Summary/Keyword: uncertain parameter

Search Result 284, Processing Time 0.025 seconds

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems (이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

Maneuvering Target Tracking in Uncertain Parameter Systems Using RoubustH_\inftyFIR Filters (견실한$H_\infty$FIR 필터를 이용한 불확실성 기동표적의 추적)

  • Yoo, Kyung-Sang;Kim, Dae-Woo;Kwon, Oh-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • This paper deals with the maneuver detection and target tracking problem in uncertain parameter systems using a robust{{{{ { H}_{ } }}}} FIR filter to improve the unacceptable tracking performance due to the parametr uncertainty. The tracking filter used in the current paper is based on the robust{{{{ { H}_{ } }}}} FIR filter proposed by Kwon et al. [1,2] to estimate the state signal in uncertain systems with parameter uncertainty, and the basic scheme of the proposed method is the input estimation approach. Tracking performance of the maneuver detection and target tracking method proposed is compared with other techniques, Bogler allgorithm [4] and FIR tracking filter [2], via some simulations to examplify the good tracking performance of the proposed method over other techniques.

  • PDF

The Design of an Improved PID Controller by Using the Kalman Filter (칼만 필터를 이용한 개선된 PID 제어기 설계)

  • Cha, In-Hyeok;Gwon, Tae-Jong;Han, Chang-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.7-15
    • /
    • 2000
  • This paper suggests an auto-tuning I'll) control algorithm that uses the advantage of PID controller and improves the system performance. The PID gains being designed by th- conventional method are tuned through the plant parameter estimation. The Extended Kalman Filter is used for the estimation. It works as an observer and noise filter. Moreover, as the plant state and the uncertain parameter could be estimated simultaneously, the proposed algorithm is very useful in the tracking control of a system with uncertain parameter. The auto-tuning I'll) controller could maintain the system performance in the case that the plant parameters are uncertain or varying. The proposed control algorithm requires a correct estimation of the plant parameter. The controller stability and the performance is considered through the stability criteria and a servo motor model. The Kalman filter estimates the most sensitive plant parameter, which is determined by the sensitivity analysis.

Research on Robust Stability Analysis and Worst Case Identification Methods for Parameters Uncertain Missiles

  • Hou, Zhenqian;Liang, Xiaogeng;Wang, Wenzheng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • For robust stability analysis of parameters uncertainty missiles, the traditional frequency domain method can only analyze each respective channel at several interval points within uncertain parameter space. Discontinuous calculation and couplings between channels will lead to inaccurate analysis results. A method based on the ${\nu}$-gap metric is proposed, which is able to comprehensively evaluate the robust stability of missiles with uncertain parameters; and then a genetic-simulated annealing hybrid optimization algorithm, which has global and local searching ability, is used to search for a parameters combination that leads to the worst stability within the space of uncertain parameters. Finally, the proposed method is used to analyze the robust stability of a re-entry missile with uncertain parameters; the results verify the feasibility and accuracy of the method.

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF

Robust control for mismatched uncertain system (불일치 시스템의 견실제어기 설계)

  • 김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.117-119
    • /
    • 1997
  • We consider the control design for nonlinear uncertain systems. The uncertainty is mismatched and possibly fast time-varying. Within the suitable range of the uncertainty the control is valid. No statistical information on uncertainty is imposed. Only the possible bound of the uncertain parameter is known and the control design is based on Lyapunov approach.

  • PDF

Stabilizing Control of Discrete-Time Uncertain Systems (이산시간 불확정 시스템의 안정화 제어)

  • Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.3-8
    • /
    • 1990
  • This paper presents a linear state feedback control approach to the stabilization of discrete-time uncertain systems with bounded uncertain parameters. The approach is based on the LQ(linear quadratic) regulator theory and Lyapunov's stability analysis. Asymptotically stable behavior is guaranteed in the presence of parameter uncertainties, and the upper bound of the performance index is determined.

  • PDF

Design of Suboptimal Robust Kalman Filter for Linear Systems with Parameter Uncertainty (파라미터 불확실성을 갖는 선형 시스템에 대한 준최적 강인 칼만필터 설계)

  • Jin, Seung-Hee;Kim, Kyung-Keun;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.620-623
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal Kalman filter with robust state estimation performance for system models represented in the state space, which are subjected to parameter uncertainties in both the state and measurement matrices. Under the assumption that the uncertain system is quadratically stable, if the augmented system composed of the uncertain system and the filter is controllable, the proposed filter can provide the upper bound of the estimation error variance for all admissible uncertain parameters. This upper bound can be represented as the convex function of a parameter introduced in the design procedure, and the optimized upper bound of the estimation error variance can also be found via the optimization of this convex function.

  • PDF