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Maneuvering Target Tracking in Uncertain Parameter Systems Using Robust H,
FIR Filters

WA, T ateh, T RENE
"Kyung-Sang Yoo - “Dae—Woo Kim - "Oh-Kyu Kwon

Abstract - This paper deals with the maneuver detection and target tracking problem in uncertain parameter systems
using a robust H. FIR filter to improve the unacceptable tracking performance due to the parameter uncertainty. The

tracking filter used in the current paper is based on the robust H, FIR filter proposed by Kwon et al. [1,2] to estimate

the state signal in uncertain systems with parameter uncertainty, and the basic scheme of the proposed method is the
input estimation approach. Tracking performance of the maneuver detection and target tracking method proposed is
compared with other techniques, Bogler allgorithm [4] and FIR tracking filter [2], via some simulations to examplify the
good tracking performance of the proposed method over other technigues.

Key Words ‘Robust H. FIR filter; maneuvering target tracking; parameter uncertainty; input estimation; Kalman filter.

1. Introduction
The tracking problem for maneuvering targets has
many military and civililan applications and has received
considerable attention in the literature. There exist several
the
late

approaches for the tracking problem, for example,
filter [56] which
the maneuver compensation method

limited  memory weights
measurement data,
which uses maneuver decision logic, and the filter-bank
method which uses Bayesian sum of sub-filter outputs.
the most popular is the compensation
and it the Q

compensation technique [7] which compensates process

Among them,

method using decision logic, includes
noise covariance, the variable dimension filtering technique
[8,9] which convert the target model after the maneuver
detection, and the input estimation technique [1, 2, 4, 10,
11] which estimates the magnitude of the maneuver input.

In conventional methods, the Kalman filter has been
used to track the maneuvering target. Using Kalman filter,
there are basic problems posed by the maneuvering target.
The problem is that the system model of the target
straight line is

moving with constant velocity in a

different from that of the actual target moving with
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that there exists a

mismatch between the modeled target dynamics and the

acceleration or maneuvering, is,
actual one. If there exist modeling errors in the target
model, the estimation error will diverge. To solve the
divergence problem, Kwon and Yoo [2] have suggested a
tracking algorithm for maneuvering targets using FIR
filtering techniques [15, 16] based on the input estimation
approach, which are known to be robust to modeling
errors, in order to overcome the filter divergence problem
under model uncertainties. However, this method may
suffer from tracking performance for uncertain systems
with all parameter uncertainties, although this method was
known to nice tracking performance for uncertain systems
with only measurement errors.

As a solution of poor tracking performance for systems
with all parameter uncertainties, we presents here a H.
which has
performance to worst case estimation problems.
H,
example [17]-[22]. However, the H.

estimation techniques been no divergence
There
a vast literature on see for

exists estimation,

filters proposed so

far are mainly restricted to pure estimation problem for
time-invariant perfect mathematical model systems. As one

of them the robust H. FIR filter in the sense that it
was an H,. filter with the FIR structure for uncertain
systems proposed by Kwon et al. [14]. It was shown that
the robust H. FIR filter always has a solution if the

standard H,. filter exists on the finite horizon [i-N,i]. It



was noted that the filter proposed works on the general
time-varying systems with parameter uncertainties by
moving the honzon.

Therefore, this paper deals with the issue of the new
tracking a maneuvering tracking

target in parameter

uncertain systems using the robust H, FIR filter. It will
be shown that the robust H., FIR tracking filter has a
if the maneuvering
the model and
measurement uncertainty. This point will be one of the
The
be used here for maneuver
tracking. The
parameter

good target tracking performance

target systems simultaneously having

main contributions of the current paper. nput

estimation approach will

detection and target target system is

described by uncertain  linear  discrete

time-varving state-space model and the maneuver is

input whose size is

FIR filter is used for state

represented by an abrupt step
unknown. The robust H.

estimatior which yields the residual for maneuver detection

and the least squares technique is wused for input

estimation. Maneuver detection is performed by ¥ test
based on the distribution of the estimated input under a
nonmaneuvering condition. When maneuver is detected by

the robust H. FIR filter, then the target tracking is

performed by compensating for the maneuvering input.
show that the
performance of the proposed method compared with Bogler
algorithm [4] and optimal FIR filter algorithm [1, 2]. This
paper will use the pseudo input acceleration target model

Various computer simulations superior

which has been proposed by Sung [3].
This paper is organized as follows: In Section 2, the

robust H. FIR filter and system description are presented.
The maneuver detection method based on the robust He
FIR filtering and the associated target tracking scheme are
presented in Section 3. Various computer simulations and
Section 4. Conculations are

results are shown in

summarized in Section 5.

2. The Robust H. FIR Filter and Target System
Models

2.1 Target system model
Let us consider discrete-time uncertain linear time-varying

systems with state-space model of the form

*x(i+1)=[A®G) + JADIx() + B() w(d) 63

W) =[C() + 2C()x( D) + D{Dw(2) (2)

2(d) = L(9)x(7) (3)
AT H. FIR LE{E OB BUNN IEEHL F5
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where x(1)€R” is the state, w(2)eR? is the noise which

belongs to A[0,o0) , HeR™ is the measured output,

z2(:)eR’ is a linear combination of the state variables to
be estimated, A,B,C,D and L are known time-varying
real bounded matrices that describe the nominal system
and that satisfies the condition

D(DBT() =0, XHDT()H>0 Vi (4)
and J4A() and JdC(3)

parameter uncertainties.

represent the time-varying
These uncertainties are assumed
to be in the following structure:

[ j‘égg - [ g;] F()E 5)

with F()eR”*
matrix function an satisfying

FTG)F(D<I Vi (®)
where H, H,

being an unknown real time-varying

and E are known real constant matrices
with appropriate dimensions. Here, the superscript ‘77
denotes the transpose, [ denotes the identity matrix with
X2Y(X> )

is positive semidefinite (respectively,

appropriate dimension, and the notation
means that X—Y

positive definite).

2.2 The robust H. FIR filter

The nominal model in the target tracking problem and
the robust H. FIR filtering problems are solved in this
subsection. Using the condition (5), the

parameterized system which corresponds to the system

matching

(1)-(3), under a nonmaneuvering condition is derived as

follows:
x(i+1) = Ax() + Bu(3) 0]
i) = Cxld) + Du(2) )
2(d)y = Lx(3) (9)
where A=A+y*B ETQ(i,O)A
B=BlI-y* B Qi 0B *
C=C+7 2D BTQi,0A
D=DlI-7* B'Qi,00B)""*
[B -—H,] D= [D ——Hz]
and @(7,0) is the solution of the following difference
Riccati equation
Qi, n—1)=ATQUi, WA+ 7 *ATQU, n) (10)

BlI-y2 B - QUi nBl ' B QUi A+ EETE

i, =0, 1<us<N

such that I—y,-_ZETQ(i,n)T%O for all ». And
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w(HeR™” is a
12[0,00), E,’)O

each horizon

noise signal which belongs to
is a scaling parameter to be chosen on
[i—N,7], and 70 1is the disturbance
attenuation level to be achieved for the robust He
estimation problem.

The robust H. FIR filter for the state x(-) in

eq.(7~(9) is defined by the form
Wil M= 2 HG,kNYE (11)

H, - N
the finite duration N . The filter of (11) and (14) is a

one-step—ahead predictor since it estimates the state at the

where is the finite impulse response with

time point i+1 based on the observation on [i—N,{] .

The estimation error is here defined by

(12)

filtering problem 1is

i+ 1) =2G+1)—2(i+1 | zN)
Then the FIR

formulated as follows:

robust He
Given the system (1)-(3) and a
prescribed level of noise attenuation ;>0 on each horizon
{i—=N,d, z(i) of the FIR

structure such that the estimation error is

find an estimation for
(11)-(14)

quadratically stable and satisfies the H. performance

feCGi+ D21 <ALl wll 3p+xIPy*x] for any non-zero
u( - yel[0,0) and for all admissible uncertainties
F(-)
lel2=eTe,
where xo=x(i—N),

Py=P(t—T,t— T)= Cov[x(i— N)]
denotes the usual /4 -norm on the horizon [i—N, 1] .
(-9 is

completely observable and the system matrix A s

Assume that the system of uniformly

nonsingular. Then the robust H. FIR filter (11) becomes
time-invariant. In this case, the filter can be represented

as:

Hi+11iM= 33 Hi~kNyR (13)

26G+1 1 EN=LG+D 21N (14)
And the impulse response of the robust H. FIR filter

is determined as follows:

H, jN)=S'G, N+ DL i N), i~N<j<i
LG, in=SGn+1) S ' (in) A TLG in—1),
0<N—i+j+1<n<N

L(i,;N—i+ )= SG,N—i+j+1)AST'\G,N—i+7)
CTies Wi, N—i+5) CT+D D!
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SG,n+1) =380, n)— S, n) BlI+ BTS(:, n) B} ™!
BTSG,my -y LTL

SG,~1)=F"—y73LTL, —1<n<N
where

Stowy= A T (SGw+ CDDH I A

an

It is noted that S(N)

covaniance of the

in Eq.(17) is the estimation error

robust H, FIR filter in the worst

case, 1e.,

Pi+ D= Elx(i+1)—x(i | M)
[xG+ 1D =26 | M1T<S3G, N
It would be impractical to assume the initial condition
on each moving horizon. Even if the initial state
covariance P(i—T,t—T)
FIR filter is still applicable
P(t—T,t— T)= 1 with 8 as a design parameter.

Since the robust H. FIR filter (11) or (13) has been

is unknown, the robust H.

to this case by taking

designed for the system (7)-(9) under the nonmaneuvering
condition, it must be modified to account for maneuver.
The target system model, under a maneuvering condition,
can be described as follows:

x(i+1) = Ax(i) + Bw(d) + Guld) (18)
(D) =Cx() + Du(d) (19)
2(7) = Lx(4) (20

where Gu(7)

FIR filter for maneuvering target system is described in

is the maneuver input. The robust H.

the following result:
Corollary 2.1 [14] Assume that the system of (18), (19)
and (20) are uniformly completely observable and the

system matrix A is nonsingular. Then there exists a
solution to the H. FIR filtering problem with the initial
P(t—T,t—T)=F1, if the following

satisfied: (a)

state covariance

conditions are There exists a solution

i, n)=0
that I—y72 BT, ) B>0 for all # ; (b) There exist a

to the difference Riccati equation (10) such

bounded symmetric matrix S(i,#)>0 for all #=0 which

satisfies the Riccati difference equation,

SG, n+1)= S, n)— 8, n) B{I+ B"S(4,n) B] !
B'SG,my—y'L7L

SG,— )= —y7’LTL, —1<n<N
where SG,m= A "[SG,n+ C(DDNH'C)A~!

Then FIR filter is determined as follows:

(21)



i | M= 3% [HG. kR + H,G ML) @2

2(i+1 | EN)=L()x(G | V)
where the impulse responses H(i, -;N) and H((, ;N
are calculated by
H(i, iN) =S (i, N+ DL(i, i N), i— N<j<i
LG,im=S(i,n+ 1D S (i,m) A LG, jin—1),

(23)

(24)
0SN—i+i+1<n<N
S, N—i+;+1)AS Y4, N—i+))
CT(CS™ (i, N—i+) CT+D D

L(i,iN—i+j)=

and

H(i, kN)= /_iMH( 5N O, BG (25)

where O( -, -) is the state transition matrix of A .

The robust H. FIR filter problem in the above
corollary is similarly formulated as that of Kwon et al.
[15,16]. Namely, under assumptions given above, it is to
find the optimal estimate, which has the FIR structure and
the minimum variance criterion, for the state x( ) of the
system (18) at the current time i
data z2{/—N, ]

over the finite preceding interval. Note that, in Corollary

using the observation

and the control input data u[:—N,7)

2.1 the width N of the observation interval can be taken
any finite value greater than or equal to the observability
index /. The estimation error covariance of the filter (22)
is S(i, V7!
of S(i,N) is guaranteed by the uniform
observability of the system (18), (19) and (20).
The robust H. FIR filter (18) of Corollary ‘2.1 does

which is obtained from (21). Nonsingularnity

complete

not require any statistical information about the initial
state x(i—AN) . Therefore, we can use it in the case there
is no information about the initial state by setting
P(i—N,i—N)=§". By the way, since it is not practical
to assume that we have the information about the initial
state at each interval [/~ N,7] , it can be said that the
robust H. FIR filter (22) of Corollary 2.1 has the
advantage that it always becomes time-invariant whenever
the system of (18), (19) and (20) is time-invariant. The
FIR filter (22) is

(0, N

impulse response of the robust H.

determined by computing on the interval only

once, it has the very simple form.
3. Maneuver Detection and Target Tracking
In this section, we present the maneuver detection

method based on the the robust H. FIR fillter. We also

AdE H. FIR ZE{E O/ B8 B8AMN 7|SEN9 5K
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describe the associated target tracking method which

employs maneuvering input compensation.

3.1 Maneuver detection method
The residual value of the nominal robust H.. FIR filter

(13) is defined, at time i

condition, as follows:

under the nonmaneuvering

nD=2(i) —2()=2() — L()2(i+1 | i N) (26)
If the target began a maneuver at time [;—M—1] and
if the maneuvering input were known and we used the
robust H. FIR filter (13), the residual value, under the

maneuvering condition, can be represented by

Pl =20~ L() %, (i | M)
=) =L(), 3 H— kN
= () — pyu,

@n

where  @,=L(3) ‘ng,{(/ﬁ N

M is the width of data window for maneuver detection
and taken here as M<N . The second eguality of (27)
comes from the assumption that the input is constant over

the time interval [i—M—1,7] | ie,

u(k)=u1(/e)5{ 0. ACi-M—1 (28)

w, k2i—M—1
Since (27) holds on the interval [i—M,:] , we have

) =gy, . w+7r, (b, i—M<k<i
The residual 7,(-)

(29)

is a zero-mean white sequence.
Therefore, from (29), we obtain the least squares estimate

for the maneuvering input « as follows:

w,=[ETe) PTR (1) (30)
Py 7’(1)
where U= %{‘1 R.(7)= 7(2:— D (31)
@0 i—M)

Based on the estimate #, of (30), we can detect the

maneuver by the test variable

~ ~ A -1 A
Ti=a{E a @) ' a (32)
Lemma 3.1 Under the nonmaneuvering condition, the

estimated input #; has zero mean and covariance
-~ ~ T — —
E[ U u ]=[WTWJ lnr[w-Tm !
”rE ¢};I‘r¢’M+ et %TF#’O

(33)

where

273
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r=ErRArk) I=LHSMLODT+R (34
Proof : If there were no maneuver, the residual { -)
forms a zero-mean white sequence with covariance (34)

and we have from (30)
Bl @ @ 1=(9"01"{ ¢TER.RTI¥) (35)

Under the nonmaneuvering condition, we have

PTERRINE= ol lypy+ -+ ol Typo= 1T, (36)

Hence the proof is completed.

By lemma 3.1, the test variable T7,(i) can be also
calculated as follows:
T.()=RIWIT;'TTR, (37)

which is derived from substituting (30) and (33) into
(32). The test variable (32) is based on the comparison
between the estimated value of the maneuver input and
the expected value under the nonmaneuvering condition. If

T[(D

a maneuver occurred at time (¢i—M—1) . But if not, it is

is greater than a threshold value, we can say that

said that there was no maneuver. When the target model
is perfect, we can find the threshold value from table with

n degrees of freedomsince T,(:) forms x° distribution.
However, if the target model had modeling errors, the

threshold value would be different from that of x° table

and should be selected via prior experiments.

3.2 Target tracking method

After detecting the maneuver, we should compensate the
maneuvering input to track the target. If the maneuver is
detected at time 7, the robust H. FIR filter is switched

to (38) using the maneuvering input estimate z; of (30):

51N =, 3 [Hi- kN
+H,(i—kN) 4 (k~1)] (38)
=3I+ 3 HG- RN & (k1)

where

~ {0, kG-M-1

. (8) { u, 12i—M—1 (39)
In (38), x. denotes the compensating filter using the

input estimate qu instead of the unknown input « in

(25). The residual value of the compensating filter (38) is
defined by

rdd=z(i— z2N=2(— L) .G | N), j2i+1

(40)
If the target began another maneuver at time
(j—M-1), the residual value, under another

maneuvering condition, can be represented by
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R = @y e ittt ru(B), j— M<k<j (41)

where w(k) = u (B +u.(k) and

[0, Rj—M—-1
u (k) {u PAYI vl (42)

Using the least squares estimate for u,

. =0T TR, (43)
20
where R.= r i o D
7’c(j—" A{)

we can determine, by the test variable 7., whether

there was another maneuver or not:

-1 A~

Tp= w. (B @, @) ' a= RTEWI'OR, (44)
where II.=gLl" Pyt o+ gooT ',

FT=Er b r D 1=o ¥TO 1 (0T~ Loy

Eq. (44) is derived similarly as (37) in lemma 3.1.
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value A,., we can say that another maneuver occurred at

If the test variable Is greater than a threshold

time (/—M—1) . In that case, the maneuvering input

estimate can be updated as follows:

=] (B, kG-M~1 45)
a'_)_, sz'—M’_l
where
w,=[ ET P TR (5 (46)

Repeating the procedure presented above, we can detect
subsequent maneuvers and thus continue to track the
manevering target continuously.

Bogler {4] and Chan et al. [10] have proposed target
tracking methods using input estimation. Their methods
are similar in concept as that presented here. But they are
different in that the latter utilizes only the single robust

H. FIR filter and uses the input estimate directly as the

test variable for the maneuver detection whereas the
former methods use Kalman filter bank and are based on
the residual statistics. Note that their methods are not
robust in uncertain systems since they do not account for
modeling errors. However, the proposed method here is not
only suitable for real-time applications owing to its simple
scheme but also robust to modeling errors due to the FIR

structure.

4. Simulation
The performance of the robust H. FIR tracking filter

is here exemplified, via some simulation examples, in



comparison with Bogler algorithm [4] and FIR tracking
filter [2], which are a typical tracking method with the
input estimation procedure. It has been applied to the
target moves in a 3-dimensional space and its dynamics
are given by Sung [3] which has the nominal system

matrices as follows:

I TI (= 1+ T/t+ e 70,

0;
A=10, I fl—e 791, , B={0,4 ,
03 03 e_T/rI3 13
[T 2—2(—1+ T/r+e D],
G= [T~ r(l—e‘m)]lg
(l‘e*T/r)]g

C:[I;; 03 03], L:[13 03 03]
where the sampling time 7T
I, and 0,

respectively.

is taken as lsec ., and

denote nxn identity and zero matrix,

The

measurement noise covariance are taken as follows:

system noise covariance and

y auds aply aul;
Q=20u/7|q11; anly guly, R=1,
qisly quly gyl
_r 2T _2T° 2T _ome AT -y
011—2(1+z_ u+3r3 e ~e 9
4 W)
T 7\_ -2T/r =T/t 2T ~T/r
013=L2‘(1—“z_—+7‘+e T _9e T/+Te Iy

2T

‘ (=3+<-~e T4ge ™)

3
0
2
2
023:‘12:(1 +e 9™y
et
2

The deviation ¢, and the maneuver time constant r

are  taken as 6, =V 5m/sec? and r=10sec ,

respectively. Its velocity components along the x | vy, and
2 axes are assumed to be x,=y,=z,=0.0m/sec and
the initial position of the target is assumed to be
Xy = yy=2,=0.0m/ sec .

The nominal system to be estimated is stable. The

parameter uncertainty is taken as follows:

JA=H,FE, AC=H,FE

000 111 un’ 101
H = [111 111 ooo] H_=[1 0 1]
111 000 111 101
0.01 0.02 0.03 0.02 0.03 0.04 0.03 0.04 0.05
E= [ 0.01 0.02 0.03  0.02 0.03 0.04  0.03 0.04 0.05}
0.01 0.02 0.03  0.02 0.03 0.04 0.03 0.04 0.05
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and F=0;3 for certain systems or F=I; for uncertain

The chosen as
y=0.5176 , €=0.2561 , B8=0.9500 and data observation
window N=10 for the robust H. FIR filter proposed

systems. design  parameters are

here.

Fig. 1 shows that the target begins to maneuver at 40
seconds during 20 seconds. Fig. 2 and Fig. 3 show the
RMS(Root Mean Square) errors of state estimation which
are computed via 30 Monte Carlo simulations using the
FIR tracking filter, Bogler algorithm [4] and the robust

H., FIR filter, respectively. It is shown in the simulation
results that the robust H, FIR filter, the FIR tracking

filter and Bogler algorithm [4] have a good tracking

performance when there is no parameter uncertainty.
However, when there is parameter uncertainty, the FIR
tracking filter and Bogler algorithm [4] fail to detect the
maneuver and cannot track the target owing to divergence
problem. On the other hand, the proposed method using

the robust H. FIR filter shows satisfactory tracking

performance even under parameter uncertainty.

5. Conclusions
This paper has proposed the maneuver detection method
using the robust H. FIR filter for the target tracking in
parameter uncertain systems. The robust H. FIR filter
given by Eq. (22) is the extension of previous works
Kown et al [14] which is the pure state estimation

problem. The maneuver detection and the target tracking

presented here are based on x* test and Input estimation.
Since the Bogler algorithm and the FIR tracking filter
have the divergence problem under parameter uncertainties,
most previous maneuver detection and target tracking
methods based on Kalman filter will not work well in
parameter uncertain systems. The FIR tracking filter can
be an alternative but the problem, in this case, is also the
divergence problem. On the contarary, since the robust

H. FIR filter enables us to overcome the divergence

problems, the proposed method has a satisfactory
performance in maneuver detection and target tracking
even under parameter uncertainties, which has been shown

via computer simulations

,,,,,
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Figure 3. Tracking performance with parameter uncertainty

( a ) Bogler algorithm, ( b ) FIR tracking filter, and ( c )
Robust H. FIR filter

Figure 2. Tracking performance with no parameter
uncertainty :
( a ) Bogler algorithm, ( b ) FIR tracking filter, and ( ¢ )

Robust He FIR filter
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