• Title/Summary/Keyword: ultraviolet(UV) sensor

Search Result 50, Processing Time 0.031 seconds

A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon (광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서)

  • Min, Nam-Gi;Go, Ju-Yeol;Gang, Cheol-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

A Study on the Relationship between Ultraviolet Rays and Skin Color Using a Photoplethysmography Sensor

  • So-Yae Hur;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.363-369
    • /
    • 2023
  • In this study, to check the function of managing the severity of ultraviolet rays with a smart watch, a popular health care IT device, It was tested whether measuring heart rate using a PPG(Photoplethysmography) sensor representatively used in a smart watch could tell skin changes caused by ultraviolet rays. Through this experiment, we examined the possibility that the skin color tanned by ultraviolet rays can be determined only by the heart rate measurement function of the PPG sensor. In addition, the possibility of expanding the heart rate measurement function of the PPG sensor to the use of skin condition management was considered. we used an Arduino-based reflective PPG sensor to measure changes in heart rate by selecting body sites with high and low UV rays exposure. A significant value was derived through tests considering factors such as gender, UV exposure, and age. As a result, the study identified the possibility of adding ultraviolet rays and skincare items to future smart watch healthcare items and the possibility of expanding skin measurement methods. It is also possible to suggest the direction of future research.

Driving Method of Ultraviolet Sensor for Fire alarms using Pulse Width Modulation (PWM을 이용한 화재 감지를 위한 자외선 센서의 구동 방법)

  • Lim, Byung-Hyun;Ko, Nak-Yong;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.31-35
    • /
    • 2004
  • We propose driving method of Ultraviolet sensor for fire alarms using pulse width modulation that used to fire detector with sensor of private-use detectable light energy as ultraviolet in energy of electromagnetic-wave type radiate from flame, when combustible burn with contain carbon,. Ultraviolet sensor is UV Tron using gas multiplication effect to current discharge and photoelectric effect of metal. To have high sensibility and to gain proper output voltage, it has high responsive performance. This research designed driving circuit with UV sensors and proposed method of false alarm reduced to resemble fire. the result propers the prevention and extinction of fire technique degree, certificated operation of detector.

  • PDF

Solar Ultraviolet Irratiance Incident on a Horizontal Surface at Taegu in Korea During 1995-1998 : (II) Ultraviolet-B

  • Suh, Kyehong
    • Journal of Photoscience
    • /
    • v.6 no.1
    • /
    • pp.5-6
    • /
    • 1999
  • Solar ultraviolet-B (UV-B) irradiances incident on a horizantal surface at Taegu of Korea during 1995-1998 were calculated with 5 min averges of measuremets taken every 30 seconds by a broadband UV-B sensor. The maximum and minimum of monthly averages of daily UV-B dose were 15.89 KJ m-2 day-1 in April and 3.91KJm-2 day-1 on May 22, 1998 and 1.230W m-2 at 12 : 45, July 13, 1998, respectively. Increasing trend in annual maximum of instantaneous UV-B radiation was averaged to 12.0% per year during 1995-1998 of observation period.

  • PDF

Design and Analysis of Flame Signal Detection with the Combination of UV/IR Sensors (UV/IR센서 결합에 의한 불꽃 영상검출의 설계 및 분석)

  • Kang, Daeseok;Kim, Eunchong;Moon, Piljae;Sin, Wonho;Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • In this paper, the combination of ultraviolet and infrared sensors based design for flame signal detection algorithms was proposed with the application of light-wavelength from burning. And, the performance result of image detection was compared by an ultraviolet sensor, an infrared sensor, and the proposed dual-mode sensors(combination of ultraviolet and infrared sensors).

Circuit Design of Ultraviolet Flame-Sensor for Fire-Fighting Appliances (자외선 센서를 이용한 화재감지기 응용 회로 설계)

  • Kim, Yeong-Min;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we proposed that when combustible burn with ultraviolet radiation, introduce fire detector with sensor of private-use detectable light energy as ultraviolet in energy of electromagnetic-wave type radiate from flame. This research using ultraviolet flame sensor is pyro-electric ultraviolet sensor based black body radiation theory. To have high sensibility and to gain proper output voltage, it has high responsive performance. This research introduced UV flame detector and proposed method of false alarm reduced to resemble fire. the result proposed the prevention and extinction of fire technique degree, certificated operation of detector.

  • PDF

The UV LED Bar Optimal Design with Human Detection and Control Function (인체 감지 제어 기능을 갖는 UV LED Bar의 최적 설계)

  • Kim, Chang-Sun;Lee, Jae-Hak;Goh, Young-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1219-1226
    • /
    • 2017
  • In this paper, it is performed the optimal design of the UV LED bar which can be used variously. The UV LED Bar emits ultraviolet rays, so it is important to emit ultraviolet rays constantly for the purpose of use. In order to emit a certain amount of ultraviolet rays as ever, the ultraviolet ray emission should be driven by a constant current source within the operable input voltage range. And also the heat dissipation is particularly important because of the long ultraviolet emission retention time due to the UV utilization characteristics. In addition, since human body protection is essential, the algorithm is configured to operate according to human body detection using distance sensor and Bluetooth. Three 365nm UV LEDs were used in series to emit ultraviolet UVA, operating at the constant current of 500mA with an efficiency of 87.5% and a power consumption of 6.006W. The ultraviolet radiation dose was measured at $5.35mW/cm^2$ at the distance of 10 cm when measured by the Lutron ultraviolet measuring instruments.