Browse > Article
http://dx.doi.org/10.5369/JSST.2019.28.3.152

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager  

Lee, Chang-Ju (School of Electronics Engineering, Kyungpook National University)
Hahm, Sung-Ho (School of Electronics Engineering, Kyungpook National University)
Park, Hongsik (School of Electronics Engineering, Kyungpook National University)
Publication Information
Journal of Sensor Science and Technology / v.28, no.3, 2019 , pp. 152-156 More about this Journal
Abstract
An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.
Keywords
GaN; UV sensor; SB-MOSFET; UV PPS; UV image sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, "Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with $HfO_2$ gate insulator", Solid-State Electron., Vol. 54, No. 1, pp. 79-83, 2010.   DOI
2 K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, "Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate", IEEE Electron Device Lett., Vol. 31, No. 3, pp. 192-194, 2010.   DOI
3 D. S. Kim, K. S. Im, K. W. Kim, H. S. Kang, D. K. Kim, S. J. Chang, Y. Bae, S. H. Hahm, S. Cristoloveanu, and J. H. Lee, "Normally-off GaN MOSFETs on insulating substrate", Solid-State Electron., Vol. 90, pp. 79-85, 2013.   DOI
4 W. Huang, T. Khan, and T. P. Chow, "Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates", IEEE Electron Device Lett., Vol. 27, No. 10, pp. 796-798, 2006.   DOI
5 H. Kambayashi, Y. Niiyama, S. Ootomo, T. Nomura, M. Iwami, Y. Satoh, S. Kato, and S. Yoshida, "Normally Off n-Channel GaN MOSFETs on Si Substrates Using an SAG Technique and Ion Implantation", IEEE Electron Device Lett., Vol. 28, No. 12, pp. 1077-1079, 2007.   DOI
6 Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, "Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited $Al_2O_3$ as gate dielectric", Appl. Phys. Lett., Vol. 93, No. 5, pp. 053504(1)-053504(3), 2008   DOI
7 D. K. Kim, D. S. Kim, S. J. Chang, C. J. Lee, Y. Bae, S. Cristoloveanu, J. H. Lee, and S. H. Hahm, "Performance of GaN Metal-Oxide-Semiconductor Field-Effect Transistor with Regrown n+-Source/Drain on a Selectively Etched GaN", Jpn. J. Appl. Phys., Vol. 52, No. 6R, pp. 061001(1)-061001(5), 2013.
8 H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, "A Normally Off GaN n-MOSFET With Schottky-Barrier Source and Drain on a Si-Auto-Doped p-GaN/Si", IEEE Electron Device Lett., Vol. 27, No. 2, pp. 81-83, 2006.   DOI
9 D. S. Kim, T. H. Kim, C. H. Won, H. S. Kang, K. W. Kim, K. S. Im, Y. S. Lee, S. H. Hahm, J. H. Lee, J. H. Lee, J. B. Ha, Y. Bae, and S. Cristoloveanu, "Performance enhancement of GaN SB-MOSFET on Si substrate using two-step growth method", Microelectron. Eng., Vol. 88, No. 7, pp. 1221-1224, 2011.   DOI
10 T. Tut, T. Yelboga, E. Ulker, and E. Ozbay, "Solar-blind AlGaN-based p-i-n photodetectors with high breakdown voltage and detectivity", Appl. Phys. Lett., Vol. 92, No. 10, pp. 103502(1)-103502(3), 2008.   DOI
11 X. D. Wang, W. D. Hu, X. S. Chen, J. T. Xu, X. Y. Li, and W. Lu, "Photoresponse study of visible blind GaN/AlGaN p-i-n ultraviolet photodetector", Opt. Quantum Electron., Vol. 42, No. 11-13, pp. 755-764, 2011.   DOI
12 M. Girolami, P. Allegrini, G. Conte, D. M. Trucchi, V. G. Ralchenko, and S. Salvatori, "Diamond Detectors for UV and X-Ray Source Imaging", IEEE Electron Device Lett., Vol. 33, No. 2, pp. 224-226, 2012.   DOI
13 K. H. Lee, P. C. Chang, S. J. Chang, and S. L. Wu, "GaN-based Schottky barrier ultraviolet photodetector with a 5-pair AlGaN-GaN intermediate layer", Phys. Stattus Solidi A, Vol. 209, No. 3, pp. 579-584, 2012   DOI
14 C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, "GaN MSM UV Photodetectors With Titanium Tungsten Transparent Electrodes", IEEE Trans. Electron Devices, Vol. 53, No. 1, pp. 38-42, 2006.   DOI
15 F. Xie, H. Lu, D. J. Chen, X. Q. Xiu, H. Zhao, R. Zhang, and Y. D. Zheng, "Metal-Semiconductor-Metal Ultraviolet Avalanche Photodiodes Fabricated on Bulk GaN Substrate", IEEE Electron Device Lett., Vol. 32, No. 9, pp. 1260-1262, 2011.   DOI
16 P. E. Malinowski, J.-Y. Duboz, P. D. Moor, J. John, K. Minoglou, P. Srivastava, F. Semond, E. Frayssinet, B. Giordanengo, A. BenMoussa, U. Kroth, A. Gottwald, C. Laubis, R. Mertens, and C. V. Hoof, "AlGaN-on-Si-Based $10-{\mu}m$ Pixel-to-Pixel Pitch Hybrid Imagers for the EUV Range", IEEE Electron Device Lett., Vol. 32, No. 11, pp. 1561-1563, 2011.   DOI