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I. INTRODUCTION

Ultraviolet rays are recognized as light that must not 

come into contact with human body. However, UV light is 

used in everyday life, and utilization rates have recently 

been increasing in various industrial fields, such as UV 

curing, UV purification, and optical semiconductor element 

fabrication by exposure to UV light [1-3]. Because UV 

light is invisible, the danger of accidents accompanying 

its use is high [4]. To reduce such accidents, a UV sensor 

is necessary. In addition, UV light is emitted by electric 

leakage and similar situations in lightning strikes and high- 

power generation, and it is possible to prevent accidents 

by detecting the UV light before a fire develops [5]. If UV 

sensors were developed based on semiconductor devices, 

these would likely cause malfunctions in applications using 

high voltages. In addition, in the case of optoelectronic 

devices exhibiting electromagnetic interference (EMI), 

although power must be supplied to the sensor, there is a 

limit to how closely the generated UV light can be 

measured [6, 7]. For these reasons, UV sensors based on 

optical fibers have been proposed as passive optical sensing 

elements that would not be affected by EMI, and would 

not require an internal power supply [8-10]. Traditionally 

the fiber Bragg grating (FBG) has exhibited unparalleled 

performance in various optical sensor applications, due to 

advantages like compact size, high sensitivity, multipoint 

measurement, and remote measurement [11, 12]. 

We have recently proposed a UV sensor based on an 

FBG coated with an azobenzene polymer that mechanically 

reacts to UV light. This special functional polymer exhibits 

good absorption in the UV region, as reported by earlier 

studies [13-16]. When azobenzene absorbs UV light, its 

internal structure changes reversibly (trans to cis), thereby 

changing the volume of the material [13, 14]. These volume 

changes due to UV absorption induce tension in the FBG, 

linearly increasing the grating period with the increase in the 

resonant wavelength of the grating. The working principle 

of the UV sensor involves indirect detection of UV light by 

measuring and analyzing the change in the grating’s central 

wavelength according to the intensity of the incident UV 

light [13]. The measurement sensitivity has been dramatically 

improved by using techniques like etching the FBG to 

reduce the diameter, so that the tension induced by the UV- 

exposed azobenzene polymer material changes the grating 

period more effectively [17]; converging the UV light to 
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the FBG sensing region using a cylindrical optical lens in 

the UV spectral range [18]; and reflecting the afterglow, 

which has not been absorbed by the polymer coating in 

the incident light, by means of a curved reflector and 

reabsorbing it under the optical sensor [19]. 

However, it is necessary to protect the polymer-coated 

FBG in air from external dust, temperature deformation, and 

physical-property changes due to environmental effects, etc., 

so an appropriate protection method should be devised for 

fiber-optic UV sensors. In this study, we used UV-transparent 

miniature hollow glass tubes to physically protect the FBG 

as a UV sensing element, because the optical element easily 

bends and deforms. We confirmed the UV measurement 

characteristics of the sensor for three types of glass tubes 

with different UV transmission characteristics, and confirmed 

the possibility of miniaturizing the optical element. In 

addition, the loss of transmitted light due to the coupling 

between the cylindrical optical lens and the glass tube was 

experimentally confirmed and theoretically analyzed.

II. METHODS AND RESULTS

The FBG (SJ Photonics Inc.) used in this study had a 

grating period of 530 nm and central wavelength of 1548.4 

nm. The azobenzene polymer as a photoactive coating 

material was coated on the etched FBG with a downsized 

diameter of approximately 80 µm. Details about the prepa-

ration of the azobenzene polymer can be found in Ref. [13]. 

Then we used three kinds of UV-transparent glass tubes 

(VitroCom Inc.) with different UV transmission spectra: (i) 

borosilicate, (ii) clear fused quartz, and (iii) synthetic fused 

silica, respectively called B-glass, Q-glass, and S-glass. The 

outer and inner diameters of all the tubes were 2.4 and 2.0 

mm respectively. Transmittance in the short-wavelength 

region of 250 nm or below decreases in order from S-glass 

to Q-glass to B-glass, as shown in Fig. 1. Therefore, we 

expect that S-glass, with good transmittance at short wave-

lengths, will provide the highest photoreactivity, compared 

to the others.

A portion of the polymer-coated region of the UV sensor 

was inserted into each tube, and the same amount of UV 

radiation was incident on the tubed sensing region. The 

central-wavelength shift of the FBG sensor was determined 

by a laboratory-made interrogation system, in which a super-

luminescent laser diode (SLD) with a central wavelength 

of 1550 nm and spectral width of 50 nm was used as the 

light source. Figure 2 illustrates the experimental setup for 

measuring the FBG’s central wavelength with respect to UV 

exposure. The central wavelength of a reflected light signal 

is generally shifted to longer wavelengths, due to change 

in the ambient temperature or tension of the FBG [18]. 

Reversible tension is induced when UV light is absorbed 

by the functional polymer coated on the FBG, which shifts 

the central wavelength associated with the change in the 

grating period. Figure 3 shows an example of the shift in 

the FBG’s resonance spectrum with UV exposure. The 

four curves show the continuous movement of the central 

wavelength of the FBG toward longer wavelengths under 

UV exposure of 4 mW/cm2 intensity for 28 s. 

FIG. 1. Transmission spectra of borosilicate, clear fused 

quartz, and synthetic fused silica glass tubes (refer to 

specifications of the miniature hollow glass tubing provided 

by VitroCom Inc.).

FIG. 2. Measurement configuration with the interrogation system for FBG sensors: etched FBG coated with the azobenzene polymer 

(left), and the sensor inserted into the UV glass tube (right).
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This experiment was carried out with consideration of 

the UV-transparent cylindrical focusing lens effect. We 

used a UV condensing lens (LJ4107-UV, Thorlabs Inc.). 

To improve the highest sensitivity, we decided to locate 

the FBG sensor at a position 1 mm above the focal length 

of the lens, because the focused UV light fully covers the 

active sensing-coating region at that position (Fig. 4(a)). In 

addition, experiments without the lenses were carried out, 

with the exposure area of UV light sufficiently containing 

the azobenzene polymer region of the FBG (Fig. 4(b)). 

Using an equipment-control program, a UV lamp (A4000 

UltraCure, EFOS Acticure Inc.) with a power of 100 W 

and wavelength of 250~450 nm was repeatedly turned on 

and off, and the optical sensor under test was exposed to 

UV light every 60 s. This operation was repeated three 

times in succession, to measure the degree of UV reaction 

of the photosensor. For high-accuracy measurement, power 

operation of the UV lamp and data acquisition were 

implemented programmatically. When the UV was turned 

on, the wavelength-shifting behavior shown in Fig. 3 was 

measured in real time, as shown in Fig. 5.

The three types of UV-transmitting glass tubes exhibited 

similar reactions and showed the same result, regardless of 

the cylindrical lenses. This is because the tube thickness of 

0.2 mm is low, and the UV absorption effect can be ignored. 

Therefore, it is effective to use B-glass for the protective 

tube for the photosensor, because the cost efficiency of the 

B-glass tube is about twice that of Q-glass and five times 

that of S-glass, while exhibiting similar characteristics.

When comparing the cases of the absence of a tube 

using the lens to the presence of a tube, the maximum rate 

of wavelength change decreases by about 5%, as shown in 

Fig. 5(a), while in contrast it decreases by 16% without 

using the lens, as shown in Fig. 5(b). The decrease depends 

on the change in UV transmission through the glass tube, 

FIG. 3. Central-wavelength shift of the FBG sensor during 

UV exposure.

   (a)        (b)

FIG. 4. Schematic of UV light measurements, with and 

without a cylindrical focusing lens.

(a) (b)

FIG. 5. UV responsivity of the FBG sensor inserted into the various glass tubes, (a) with and (b) without a focusing lens, compared 

to the FBG sensor with no tube.
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due to absorption and/or reflection in the tube. Assuming 

that the UV absorption of the very-low-thickness glass 

tubes is small, the drop in UV response depends only on 

the reflection effect on the glass tube, with or without the 

focusing lens.

Figure 6 shows schematics of a glass tube, according to 

whether or not the lens is used in the theoretical analysis. 

When no condenser lens is used, h is the height between 

the starting point of the UV light and the center of the 

tube, r is the radius of the tube, d is the tube’s thickness, 

and θ is the angle of incidence for any x and y-axis. If the 

lens shown in Fig. 6(a) is used, because it is at normal 

incidence θ = 0, and the reflectance R is given by

 









 


, (1)

where n1 and n2 are the refractive indices of air and the 

glass respectively. The refractive index of the tube’s glass is 

set to 1.4585, equivalent to that of fused silica [20]. Using 

Eq. (1) and 
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The reflectance was theoretically estimated to be about 

28%, using incident angles at the outer and inner surfaces 

of the glass tube (Eq. (2)) and Fresnel equations [21] 

considering multiple reflection from the inner and outer 

surfaces. It was confirmed that the experimental value of 

16% in Fig. 5(b) differs by about 12% from the calculated 

value. This is because the calculation is based on the 

assumption of equal amounts of transverse electric and 

transverse magnetic polarized light, unlike the polarized 

light actually emitted from the UV source. It has been 

reported that the focused UV light from a cylindrical lens 

increases the photosensitivity of the optical sensor [18]. In 

this study, we also observed that the focused light is 

efficient even when using the glass tube to protect the FBG 

sensor as a passive UV-sensing element, because of the UV 

transmission characteristics related to the Fresnel reflections.

III. CONCLUSION

In this study, we conducted an experiment to select a type 

of UV-transparent glass tube for the physical protection of 

a highly sensitive UV sensor based on a diameter-downsized 

FBG coated with an azobenzene polymer. To determine 

the best glass for the UV sensor, we tested the UV-induced 

responses of the FBG inserted in each of three glass tubes. 

All of the tubes tested exhibited similar characteristics, but 

B-glass is about 3-5 times more economical than the other 

glass types. In addition, it was observed that it is effective to 

use a UV-focusing lens, based on the result that the response 

when using the glass tube also exhibits a decreasing trend: 

When the lens is used, 5% is the maximum difference of 

the UV-induced wavelength shift in the presence or the 

absence of the glass tube, whereas it is 16% when the lens 

it not used. We found that it is useful to combine the 

B-glass tube with the cylindrical focusing lens in the UV 

region, to physically protect the fiber-optic UV sensor while 

maintaining its detection sensitivity. 

 (a)    (b)

FIG. 6. Schematic for the analysis of reflection effects of UV light in a glass tube, (a) with and (b) without the focusing lens.
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