• 제목/요약/키워드: ultrasonic spray pyrolysis

검색결과 122건 처리시간 0.021초

초음파분무열분해에 의한 투명전도성 산화주석막의 제조 (Preparation of Transparent and Conducting Tin Oxide Films by the Ultrasonic Spray Pyrolysis)

  • 김상길;윤천호
    • 공업화학
    • /
    • 제9권2호
    • /
    • pp.214-219
    • /
    • 1998
  • 초음파분무 열분해에 의하여 유리 기판 위에 투명전도성 산화주석막을 증착하였다. 증착변수가 산화주석막의 전기저항, 광투과도, 결정구조 및 두께에 미치는 영향을 조사하였다. 증착시간과 염화주석(IV)의 농도가 증가함에 따라, 증착된 산화주석막의 전기저항과 가시선 및 근적외선 영역에서의 광투과도가 감소함을 보여주었다. 공기중에서 열처리온도가 증가하면, 증착된 산화주석막은 전기저항과 광투과도가 증가함을 나타냈다. 본 연구결과는 초음파분무열분해가 단일과정으로서 양질의 투명전도막을 효율적으로 제조할 수 있는 유망한 증착기술임을 암시한다.

  • PDF

A Study on $CeO_2/SiO_2$ Composite Powder Synthesis Using Ultrasonic Spray Pyrolysis Method and Effect of Sensory Texture Improvement

  • Lee, Dong-Kyu;Lee, Jin-Hwa
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.175-181
    • /
    • 2005
  • The spherical particles of $CeO_2/SiO_2$ composite powder with narrow-size distribution and pure phase particles were synthesized by ultrasonic spray pyrolysis method from aqueous cerium sulfate solution. The resulting composite powder was characterized by X-ray diffraction, scanning electron microscopy, transmittance electron microscopy, in-vitro sun protect factor, and BET surface area analysis. The concentration of cerium sulfate was tested to vary the particle size from $3.40{\times}10^{-3}$ to $1.02{\times}10^{-2}mol/cm^3$ to study concentration effect of starting material. The average particle size from the $3.40{\times}10^{-3}mol/cm^3$ concentration was found to be slightly smaller than that from the $1.02{\times}10^{-2}mol/cm^3$ concentration, because of the relation between the droplet size and the concentration of the starting material solution.

초음파 분무 열분해법으로 제초한 ZnO막의 전기적, 구조적 특성에 미치는 In첨가 효과 (In-doping effects on the Structural and Electrical Properties of ZnO Films prepared by Ultrasonic Spray Pyrolysis)

  • 심대근;양영신;마대영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1010-1013
    • /
    • 2001
  • Zinc oxide(ZnO) films were prepared by ultrasonic spray pyrolysis on indium (In) films deposited by evaporation and subsequently submitted to rapid thermal annealing (RTA). The RTA was processed in air or a vacuum ambient. The crystallographic properties and surface morphologies of the films were characterized before and after the RTA by X-ray diffraction (XRD) and scanning electron microscopy(SEM), respectively. The resistivity variation of the films with RTA temperature and time was measured by the 4-point probe method. Auger electron spectroscopy(AES) was carried out to figure out the distribution of indium atoms in the ZnO films. The resistivity of the ZnO on In(ZnO/In) films decreased to 2${\times}$10$\^$-3/ $\Omega$cm by diffusion of the In. The In diffusion into the ZnO films roughened the surface of the ZnO films. The results of depth profile by AES showed a hump of In atoms around ZnO/In interface after the RTA at 800$^{\circ}C$, which disappeared by the RTA at 1000$^{\circ}C$. The effects of temperature, time and ambient during the RTA on the structural and electrical properties of the ZnO/In films were discussed.

  • PDF

초음파분무열분해법에 의한 나노 텅스텐 분말의 형성 및 특성에 관하여 (The Characteristics and Formation of Tungsten Nano-Powder by Ultrasonic Spray Pyrolysis Method)

  • 이호진;윤중현;최진일
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.174-179
    • /
    • 2008
  • Nanosize tungsten powder was synthesized by ultrasonic spray pyrolysis method through a solution containing ammonium metatungstate hydrate $[(NH_4)_6W_{12}O_{39}{\cdot}H_2O]$ and reduction treatment. It was expected the improvement of mechanical properties due to increasing surface free energy and surface activity. Starting solutions with each concentration, reaction temperature and reduction treatment were significantly influenced on the formation of tungsten size and phase. It was found that particle size was decreased with concentration of starting solution and surface tension were decreased. The particle size was increased at thermal decomposition temperature above $600^{\circ}C$ by neck growth of interparticles. Tungsten particles were formed by reduction reaction in atmosphere of hydrogen gas at the temperature above $700^{\circ}C$.

초음파 분무 열분해 공정을 이용한 TiOF2 분말의 합성과 광학적 성질 (Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process)

  • 황보영;이영인
    • 한국분말재료학회지
    • /
    • 제23권4호
    • /
    • pp.307-310
    • /
    • 2016
  • $TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.

염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질 (Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 황보영;이영인
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

초음파 분무 열분해 공정과 질화처리를 이용한 GaN 분말의 합성과 광학적 성질 (Synthesis and Optical Property of GaN Powder Using an Ultrasonic Spray Pyrolysis Process and Subsequent Nitridation Treatment)

  • 지명준;유재현;이영인
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.482-486
    • /
    • 2018
  • Despite numerous advances in the preparation and use of GaN, and many leading-edge applications in lighting technologies, the preparation of high-quality GaN powder remains a challenge. Ammonolytic preparations of polycrystalline GaN have been studied using various precursors, but all were time-consuming and required high temperatures. In this study, an efficient and low-temperature method to synthesize high-purity hexagonal GaN powder is developed using sub-micron $Ga_2O_3$ powder as a starting material. The sub-micron $Ga_2O_3$ powder was prepared by an ultrasonic spray pyrolysis process. The GaN powder is synthesized from the sub-micron $Ga_2O_3$ powder through a nitridation treatment in an $NH_3$ flow at $800^{\circ}C$. The characteristics of the synthesized powder are systematically examined by X-ray diffraction, scanning and transmission electron microscopy, and UV-vis spectrophotometer.

분무 열분해에 의한 미세 BSCCO 전구체 분말의 합성 (Synethisis of fine BSCCO precursor powder by spray pyrolysis)

  • 김성환;유재무;고재웅;김영국;박성창
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2003
  • Many researches on synthesis process for BSCCO precursor powders have been developed for high J$_{c}$ BSCCO-2223/Ag tape. Spray pyrolysis method for fabrication of precursor powder has many advantages, such as high purity, fine particle size of BSCCO precursor powder. Fine, spherical powders were prepared by ultrasonic spray pyrolysis from the aqueous solution of metal nitrates. BSCCO precursor powders were synthesized with 0.1 M concentration and heat treatment conditions. Average particle size for spray pyrolysis powders was 1.5 ~ 3 ${\mu}{\textrm}{m}$. BSCCO -2223/Ag tape was prepared by PIT method and followed by various sintering conditions. The critical current density of BSCCO-2223/Ag tape sintered in low oxygen partial pressure was ~ 23 kAcm$^{-2}$.

  • PDF

염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향 (Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 유재현;지명준;박우영;이영인
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

초음파 분무 열분해법에 의한 TiO2 및 BaTiO3 분말의 제조 (Synthesis of TiO2 and BaTiO3 Powders by Ultrasonic Spray Pyrolysis Method)

  • 김덕준;김환
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.691-697
    • /
    • 1989
  • Fine TiO2 and BaTiO3 powders having spherical particles were synthesized by ultrasonic spray pyrolysis of alcoholic solution of metal alkoxide in an electric furnace heated at 400-90$0^{\circ}C$. Microstructure and composition of particles synthesized were observed by TEM and XRD respectively. Spectific surface area of powders synthesized was examined through BET specific surface area measurement. TEM observation revealed that the particle size did not change irrespective of pyrolysis temperature but decreased according to the increase of concentration and spherical particle was consisted of primary particles of about 0.02${\mu}{\textrm}{m}$. As for BaTiO3 powder, the ratio of Ti/Ba was 0.987 by EDX analysis.

  • PDF