Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.4.307

Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process  

Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.4, 2016 , pp. 307-310 More about this Journal
Abstract
$TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.
Keywords
$TiOF_2$; Ultrasonic; Spray pyrolysis; Oxyfluoride; Photocatalyst;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.V. Reddy, S. Madhavi, G.V.S. Rao and B.V.R. Chowdari: J. Power Sources, 162 (2006) 1312.   DOI
2 B. Li, D. Wang, Y. Wang, B. Zhu, Z. Gao, Q. Hao, Y. Wang and K. Tang: Electrochim. Acta, 180 (2015) 894.   DOI
3 M. He, Z. Wang, X. Yan, L. Tian, G. Liu and X. Chen: J. Power Sources, 306 (2016) 309.   DOI
4 S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, V.G. Kuryavyi, A.Yu. Ustinov and V.I. Sergienko: J. Alloys Compd., 621 (2015) 364.   DOI
5 J. Wang, F. CaO, Z. Bian, M.K.H. Leung and H. Li: Nanoscale, 6 (2014) 897.   DOI
6 J. Zhu, D. Zhang, Z. Bian, G. Li, Y. Huo, Y. Lu and H. Li: Chem Commun., (2009) 5394.
7 K. Lv, J. Yu, L. Cui, S. Chen and M. Li: J. Alloys Compd., 509 (2011) 4557.   DOI
8 Y.Y. Lv, L.H. Yu, H.Y. Huang, H.L. Liu and Y.Y. Feng: Appl. Surf. Sci., 255 (2009) 9458.   DOI
9 L. Permer and M. Lundberg: J. Solid State Chem., 81 (1989) 21.   DOI
10 S.T. Myung, S. Sakurada, H. Yashiro and Y.K. Sun: J. Power Sources, 223 (2013) 1.   DOI
11 L. Chen, L. Shen, P. Nie, X. Zhang and H. Li: Electrochim. Acta, 62 (2012) 408.   DOI
12 Z. Huang, Z. Wang, K. Lv, Y. Zheng and K. Deng: ACS Appl. Mater. Interfaces., 5 (2013) 8663.   DOI
13 N. Louvain, Z. Karkar, M. El-Ghozzi, P. Bonnet, K. Guerin and P. Willmann: J. Mater. Chem. A, 2 (2014) 15308.   DOI
14 R.J. Nussbaumer, W.R. Caseri, P. Smith and T. Tervoort: Macromol. Mater. Eng., 288 (2013) 44.
15 D.S. Jung, S.B. Park and Y.C. Kang: Korean J. Chem. Eng, 27 (2010) 1621.   DOI
16 Y. Itoh and I. W. Lenggoro: J. Mater. Res., 17 (2002) 3222.   DOI
17 A.B. Murphy: Sol. Energ. Mat. Sol. Cells, 91 (2007) 1326.   DOI