DOI QR코드

DOI QR Code

Synthesis and Optical Property of a TiOF2 Powder via an Ultrasonic Spray Pyrolysis Process

초음파 분무 열분해 공정을 이용한 TiOF2 분말의 합성과 광학적 성질

  • Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 황보영 (서울과학기술대학교 신소재공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2016.08.01
  • Accepted : 2016.08.14
  • Published : 2016.08.28

Abstract

$TiOF_2$, which has remarkable electrochemical and optical properties, is used in various applications such as Li-ion batteries, electrochemical displays, and photocatalysts. In addition, it is possible to utilize the template which is allowed to synthesize fluorine doped $TiO_2$ powders with hollow or faceted structures. However, common synthesis methods of $TiOF_2$ powders have some disadvantages such as the use of expensive and harmful precursors and batchtype processes with a limited production scale. In this study, we report a synthetic route for preparing $TiOF_2$ powders by using an inexpensive and harmless precursor and a continuous ultrasonic spray pyrolysis process under a controlled atmosphere to address the aforementioned problems. The synthesized powder has an average size of $1{\mu}m$, a spherical shape, a pure $TiOF_2$ phase, and exhibits a band-gap energy of 3.2 eV.

Keywords

References

  1. M.V. Reddy, S. Madhavi, G.V.S. Rao and B.V.R. Chowdari: J. Power Sources, 162 (2006) 1312. https://doi.org/10.1016/j.jpowsour.2006.08.020
  2. B. Li, D. Wang, Y. Wang, B. Zhu, Z. Gao, Q. Hao, Y. Wang and K. Tang: Electrochim. Acta, 180 (2015) 894. https://doi.org/10.1016/j.electacta.2015.09.034
  3. M. He, Z. Wang, X. Yan, L. Tian, G. Liu and X. Chen: J. Power Sources, 306 (2016) 309. https://doi.org/10.1016/j.jpowsour.2015.12.032
  4. S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, V.G. Kuryavyi, A.Yu. Ustinov and V.I. Sergienko: J. Alloys Compd., 621 (2015) 364. https://doi.org/10.1016/j.jallcom.2014.10.023
  5. J. Wang, F. CaO, Z. Bian, M.K.H. Leung and H. Li: Nanoscale, 6 (2014) 897. https://doi.org/10.1039/C3NR04489K
  6. J. Zhu, D. Zhang, Z. Bian, G. Li, Y. Huo, Y. Lu and H. Li: Chem Commun., (2009) 5394.
  7. K. Lv, J. Yu, L. Cui, S. Chen and M. Li: J. Alloys Compd., 509 (2011) 4557. https://doi.org/10.1016/j.jallcom.2011.01.103
  8. Y.Y. Lv, L.H. Yu, H.Y. Huang, H.L. Liu and Y.Y. Feng: Appl. Surf. Sci., 255 (2009) 9458. https://doi.org/10.1016/j.apsusc.2009.07.058
  9. L. Permer and M. Lundberg: J. Solid State Chem., 81 (1989) 21. https://doi.org/10.1016/0022-4596(89)90196-5
  10. S.T. Myung, S. Sakurada, H. Yashiro and Y.K. Sun: J. Power Sources, 223 (2013) 1. https://doi.org/10.1016/j.jpowsour.2012.09.027
  11. L. Chen, L. Shen, P. Nie, X. Zhang and H. Li: Electrochim. Acta, 62 (2012) 408. https://doi.org/10.1016/j.electacta.2011.12.058
  12. Z. Huang, Z. Wang, K. Lv, Y. Zheng and K. Deng: ACS Appl. Mater. Interfaces., 5 (2013) 8663. https://doi.org/10.1021/am4023048
  13. N. Louvain, Z. Karkar, M. El-Ghozzi, P. Bonnet, K. Guerin and P. Willmann: J. Mater. Chem. A, 2 (2014) 15308. https://doi.org/10.1039/C4TA02553A
  14. R.J. Nussbaumer, W.R. Caseri, P. Smith and T. Tervoort: Macromol. Mater. Eng., 288 (2013) 44.
  15. D.S. Jung, S.B. Park and Y.C. Kang: Korean J. Chem. Eng, 27 (2010) 1621. https://doi.org/10.1007/s11814-010-0402-5
  16. Y. Itoh and I. W. Lenggoro: J. Mater. Res., 17 (2002) 3222. https://doi.org/10.1557/JMR.2002.0466
  17. A.B. Murphy: Sol. Energ. Mat. Sol. Cells, 91 (2007) 1326. https://doi.org/10.1016/j.solmat.2007.05.005

Cited by

  1. Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant vol.25, pp.3, 2018, https://doi.org/10.4150/KPMI.2018.25.3.257