Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.4.326

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process  

Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.4, 2017 , pp. 326-331 More about this Journal
Abstract
The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.
Keywords
$BaTiO_3$; Nanoparticles; Ultrasonic; Spray pyrolysis; Refractive index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. G. Liu and M. Ued: J. Mater. Chem., 19 (2009) 8907.   DOI
2 P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B. C. Benicewicz, R. W. Siegel and L. S. Schadler: J. Mater. Chem., 21 (2011) 18623.   DOI
3 C. Liu, T. J. Hajagos, D. Chen, Y. Chen, D. Kishpaugh and Q. Pei: ACS Appl. Mater. Interfaces, 8 (2016) 4795.   DOI
4 T. Higashihara and M. Ueda: Macromolecules, 48 (2015) 1915.   DOI
5 S. Maeda, M. Fujita, N. Idota, K. Matsukawa and Y. Sugahara: ACS Appl. Mater. Interfaces, 8 (2016) 34762.   DOI
6 J. Lott, C. Xia, L. Kosnosky, C. Weder and J. Shan: Adv. Mater., 20 (2008) 3649.   DOI
7 K. Abe, D. Nagao, A. Watanabe and M. Konno: Polym. Int., 62 (2013) 141.   DOI
8 G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen: Polym. Int., 48 (2010) 1433.
9 M. Niederberger, N. Pinna, J. Polleux and M. Antonietti: Angew. Chem., 116 (2004) 2320.   DOI
10 M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva- Santos, E. Longo and J. A. Varela: Chem. Mater., 20 (2008) 5381.   DOI
11 S. I. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe and M. Naito: Mater. Lett., 62 (2008) 2957.   DOI
12 J. W. Overcash and K. S. Suslick: Chem. Mater., 27 (2015) 3564.   DOI
13 J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039.   DOI
14 K. K. Lee, Y. C. Kang, K. Y. Jung and J. H. Kim: J. Alloys. Compd., 395 (2005) 280.   DOI
15 Y. Itoh, I. W. Lenggoro, K. Okuyama, L. Madler and S. E. Pratsinis: J. Nanopart. Res., 5 (2003) 191.   DOI
16 H. Yoneyama, Y. Toyoguchi and H. Tamura: J. Phys. Chem., 76 (1972) 3460.   DOI
17 S. Saha, T. P. Sinha and A. Mookerjee: Phys. Rev. B, 62 (2000) 8828.   DOI