• Title/Summary/Keyword: two-point boundary conditions

Search Result 117, Processing Time 0.028 seconds

TWO EXAMPLES OF LEFSCHETZ FIXED POINT FORMULA WITH RESPECT TO SOME BOUNDARY CONDITIONS

  • Yoonweon Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • The boundary conditions $\tilde{P}_0$ and $\tilde{P}_1$ were introduced in [5] by using the Hodge decomposition on the de Rham complex. In [6] the Atiyah-Bott-Lefschetz type fixed point formulas were proved on a compact Riemannian manifold with boundary for some special type of smooth functions by using these two boundary conditions. In this paper we slightly extend the result of [6] and give two examples showing these fixed point theorems.

GENERALIZED SECOND-ORDER DIFFERENTIAL EQUATIONS WITH TWO-POINT BOUNDARY CONDITIONS

  • Kim, Young Jin
    • The Pure and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.157-175
    • /
    • 2019
  • In this paper we define higher-order Stieltjes derivatives, and using Schaefer's fixed point theorem we investigate the existence of solutions for a class of differential equations involving second-order Stieltjes derivatives with two-point boundary conditions. The equations include ordinary and impulsive differential equations, and difference equations.

Linear Quadratic Regulators with Two-point Boundary Riccati Equations (양단 경계 조건이 있는 리카티 식을 가진 선형 레규레이터)

  • Kwon, Wook-Hyun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.5
    • /
    • pp.18-26
    • /
    • 1979
  • This paper extends some well-known system theories on algebraic matrix Lyapunov and Riccati equations. These extended results contain two point boundary conditions in matrix differential equations and include conventional results as special cases. Necessary and sufficient conditions are derived under which linear systems are stabilizable with feedback gains derived from periodic two-point boundary matrix differential equations. An iterative computation method for two-point boundary differential Riccati equations is given with an initial guess method. The results in this paper are related to periodic feedback controls and also to the quadratic cost problem with a discrete state penalty.

  • PDF

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF

POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY VALUE PROBLEM OF FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Wang, Haihua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.147-160
    • /
    • 2012
  • In this paper, we establish some sufficient conditions for the existence of positive solutions for a class of multi-point boundary value problem for fractional functional differential equations involving the Caputo fractional derivative. Our results are based on two fixed point theorems. Two examples are also provided to illustrate our main results.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

Positive Solutions for Three-point Boundary Value Problem of Nonlinear Fractional q-difference Equation

  • Yang, Wengui
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.419-430
    • /
    • 2016
  • In this paper, we investigate the existence and uniqueness of positive solutions for three-point boundary value problem of nonlinear fractional q-difference equation. Some existence and uniqueness results are obtained by applying some standard fixed point theorems. As applications, two examples are presented to illustrate the main results.

THE METHOD OF ASYMPTOTIC INNER BOUNDARY CONDITION FOR SINGULAR PERTURBATION PROBLEMS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.937-948
    • /
    • 2011
  • The method of Asymptotic Inner Boundary Condition for Singularly Perturbed Two-Point Boundary value Problems is presented. By using a terminal point, the original second order problem is divided in to two problems namely inner region and outer region problems. The original problem is replaced by an asymptotically equivalent first order problem and using the stretching transformation, the asymptotic inner condition in implicit form at the terminal point is determined from the reduced equation of the original second order problem. The modified inner region problem, using the transformation with implicit boundary conditions is solved and produces a condition for the outer region problem. We used Chawla's fourth order method to solve both the inner and outer region problems. The proposed method is iterative on the terminal point. Some numerical examples are solved to demonstrate the applicability of the method.

ELLIPTIC BOUNDARY VALUE PROBLEM WITH TWO SINGULARITIES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.9-21
    • /
    • 2018
  • We investigate existence and multiplicity of the solutions for elliptic boundary value problem with two singularities. We obtain one theorem which shows that there exists at least one nontrivial weak solution under some conditions on which the corresponding functional of the problem satisfies the Palais-Smale condition. We obtain this result by variational method and critical point theory.