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NUMERICAL INTEGRATION METHOD FOR SINGULAR
PERTURBATION PROBLEMS WITH MIXED BOUNDARY
CONDITIONS

AWOKE ANDARGIE* AND Y.N.REDDY

ABSTRACT. In this paper, the numerical integration method for general sin-
gularly perturbed two point boundary value problems with mixed boundary
conditions of both left and right end boundary layer is presented. The orig-
inal second order differential equation is replaced by an approximate first
order differential equation with a small deviating argument. By using the
trapezoidal formula we obtain a three term recurrence relation, which is
solved using Thomas Algorithm. To demonstrate the applicability of the
method, we have solved four linear (two left and two right end boundary
layer) and one nonlinear problems. From the results, it is observed that
the present method approximates the exact or the asymptotic expansion
solution very well.
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1. Introduction

The numerical treatment of singular perturbation problems has been far from
trivial, because of the boundary layer behavior of the solutions. However, the
area of singular perturbation is of increasing interest to applied mathemati-
cians. The survey paper of Kadalbajoo and Reddy [5] and Kadalbajoo and
Patidar|[6], gives an erudite outline of the singular perturbation problems. For
detailed discussion on the analytic theory of general singular perturbation prob-
lems, one may refer to Bender and Orsazag [1], Kevorkian and Cole {3}, Nayfeh
[7-8], O'Malley [9], Reddy{11-12] and Van Dyke [13]. The numerical integra-
tion method developed by Y.N.Reddy and K.Anantha Reddy [10] is extended
for general singularly perturbed two point boundary value problems with mixed
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boundary conditions of both left and right end boundary layer. The motiva-
tion impulse for this method was to provide the practicing engineer or applied
mathematician withy a means of solving more general class of singular pertur-
bation problems in a routine manner. As a part of continuing effort to deter-
mine the applicability and the limitations of the integration method, we have
been attempting to solve more general singularly perturbed two point bound-
ary value problems in ordinary differential equations. Typically, these problems
arise very frequently in fluid mechanics, elasticity, chemical reactor theory and
many other allied areas. For example: the singular perturbation problems with
mixed boundary conditions of the form:

ey’(z) +p(z)y (z) + gl@)y(z) = f(z), z € [0,1]
with 9/(0) — ay(0) = a and y'(1) + by(1) =B
arise in the study of adiabatic tubular chemical flow reactors with axial diffusion.
O’Malley [9] obtained the asymptotic solution y(z, &), which converges to yo(z),
z € [0,1], of the reduced problem, while y'(z,€) converges non-uniformly as
e — 0 either at z = 0,(i.e p(z) > M > 0) or at = = 1(i.e, p(z) < M < 0).
In this method, the original second order differential equation is replaced by an
approximate first order differential equation with a small deviating argument.
By using the trapezoidal formula we obtain a three term recurrence relation,
which is solved using Thomas Algorithm. To demonstrate the applicability of
the method, we have solved four linear (two left and two right end boundary
layer) and one nonlinear problems. From the results, it is observed that the
present method approximates the exact or the asymptotic expansion solution
very well.

2. Left boundary layer

To describe the method we considered the following singular perturbation
problem with mixed boundary conditions:

ey’(z) + p(z)y' (z) + g(z)y(z) = f(z),2 € [0,1] (1)

with
a19(0) + a2y’ (0) =, (2a)
and, azy(l) +asy'(1) = B (2b)

where ¢ is a small positive parameter (0 < ¢ << 1)and a;,7 = 1,..,4,0, 3 are
known constants. We assume that a(z),b(z) and f(z) are sufficiently contin-
uously differentiable functions in [0,1]. Further more, we assume that a(z) >
M > 0 throughout the interval [0,1], where M is some positive constant. This
assumptions merely implies that the boundary layer will be in the neighborhood
of x=0. Let § be a small deviating argument (0 < § << 1). By using Taylor
series expansion of order 2 in the neighborhood of the point z, we get
2

a - 8) ~u(z) -8/ (@) + S/ (@) @
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Substituting equation (3) in to equation (1), we get

2ey(z ~ 0) ~ 28y (2) + $a(2)y () + 6b()y(z) = 6°f(z) (4)
we rewrite equation (4) in the form
¥ (z) = p(z)y(z — &) + q(z)y(z) + r(z), for §<x<1 (5)
where
—2e
p(z) = m, (6a)
00) = g g (60
2f(x
and, r(z) = 55% (6¢)

Equation (5) is a first order differential equation replacing the second order
differential equation (1) with a small deviating argument. Transition from (1)
to (5) is admitted, because of the condition that § is small (0 < § << 1). This
replacement is significant from the computational point of view. Further theo-
retical discussion and details on the validity of this transition can be referred in
Elsgolts and Norkin[4]. Now we divide the interval [0,1] in to N equal subinter-
vals of mesh size h=1/N so that z; = ih,i = 0,1,2,..N. Integrating equation
(5) in the subinterval|z;, z;41],¢ =0,1,2,, N, we get

Wea) —v@) = [ @) ) + a(e)y(a) +r(z)] do. 7)

T

Using the Trapezoidal formula for evaluating the integral approximately, we get

Y@i) ~9(z0) = o [plees)u(@n ) + pleula: —9)

e y@in) + a@y@)] + M) + (@) ®

Again, we make use of the Taylor series expansion of order 1 on y(z — §) and we
get

y(z - 8) = y(z) — 6y (). (9)

Approximating 3/ () by linear interpolation, (9) can be described as

oo —d) mafe) - 6 | MO (1 Dy 1 ey o

Similarly

Wit — ) ~ ylris) - 6 [?—"—“’h-“—yﬁ] = (1= Duaun) + Syl (@)
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Substituting equations (9) and (10) in (8) and rearranging, we get
y(zi) —y(z:)

= gp(ﬂwrl) [(1 - %)y(%‘ﬂ) + %y(mi)}

h ) )
+§P(~’Ei) [(1 - E)y(xi) + }—Ly(fﬂz‘—l)]
h h
+§[Q($i+1)y($z‘+1) + g(z)y(z:)] + §[T($i+1) +r(zi)],
h ) )
Y(@iy1) —ylz:) = 5(1 - E)P(fl?i+1)y($i+1) + §p(xi+1)y(xi)
h 6 )
+5 (1= 2)p(za)y(z:) + 5p(za)y(zi-1)
2 h 2
h h h
+54(@ir)y(@ir) + Sa(@i)y(z:) + S r(@i) + r(z;))- (12)
Equation (12) can be rewritten in a three-term recurrence relationship as follows:
Eyi-1 — Fiyi + Gy = Hi,1=0,1,2, ., N (13)
where
)
E, = — 5P (14a)
) h ) h
Fi=1+4opin+ 51— )i+ 5@ (14b)
h ) h
Gi=1-35(—)pir1 — 561 (14c)
h

H;= 5(7‘1‘ + Tit1) (14d)

and y; = y(z:),ps = p(z:), ¢ = q(;) and r; = r(z;). Equation (13) gives a
system of N+ 1 equations with N+3 unknowns’ yo to yn and the unwanted
unknowns’ y_1 and ynyi1. To eliminate the unknowns,y_1 and yni1, we
make use of the equations in (2) given as boundary conditions in mixed form.
By employing the second order central difference approximation in (2),we get

a1y(0) + a2(——y1 ;hy‘l) =a (15a)
and, asy(l) + a4<yitl—2_}—LM) =f (15b)
From (15) we have
2hay 2ha
y1="—yo+y - —, (16a)
az az
Qhﬂ 2ha3

and YnNy1 = ‘a:yN—l - “‘&4—ZIN- (16b)
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Making use of (16a) in the first equation of the recurrence relation (13) at
i = 0 and (16b) in the last equation of the recurrence relation (13) at i =
N respectively, we get,

2ha 2ha
(S22 B0~ Fo)wo + (Bo + Golyr = Ho+ — By
a2 a2 (17a)
2ha 2h,
and (Ey+ GN)yn-1 — ('—a“‘?‘G’N + FN) yv =Hy — JGN
4 @4 (17b)

Now, equations (13) and (17) give an N+1 by N+1 tri-diagonal system which
can be solved by using Thomas Algorithm. Repeat the numerical scheme for
different choice of §(deviating argument, satisfying the condition 0 < § << 1),
until the solution profile do not differ materially from iteration to iteration. For
computational point of view, we use an absolute error criterion, namely

Y™ (@) ~y™ (@) <o for 0< T <1 (18)
Where y™ is the solution for the mth iterate of § ando is the prescribed tolerance
bound.

3. Linear examples
To illustrate the present method we have chosen two linear singular per-

turbation problems with left-end boundary layer which are widely discussed in
literature.

Example 3.1. Consider the following singular perturbation problem from Dorr
et al([2], page 80).

ey’'(z) +9/(z) - y(z) = 0;2 € [0,1]
with —3/(0) = 0 and y(1) + ey/(1) = 1. The exact solution is given by :
moe™% — m,em2®

y(@) = ma(1+ € *my)e™ —my(l+ e *mg)em
-1+ 1+ 4 -1—-1+4e
where m; = TS and mg = ——

The numerical results are given in tables 1(a), 1(b) for ¢ = 10 3and ¢ = 104
respectively.

Example 3.2. Consider the following singular perturbation problem from Dorr
et al([2],page80).

ey (z) +9/(z) = -1 - 2z;2 € [0,1]
with —3/(0) =1 and y(1) + ey/(1) = 0. The exact solution is given by :
z
y@)=2-z(1+z)+e [1 -2 (s [1 - exp(mg)} - :c)]

The numerical results are given in tables 2(a), 2(b) fore = 10~ 3and ¢ = 1074
respectively.
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4. Non-linear examples

We have applied the present method on non-linear singularly perturbed prob-
lem with left end boundary layer by using the method of quasilinearization.

Example 4.1. Consider the following semi-linear boundary value problem from
Dorr et al[[2], page 80].

ey’ (2) + 9/ (x) - y*(2) = Gw € [0, 1]
with —¢/(0) = 0 and y(1) + ey’ (1) = 0. The linear problem concerned is:

1 2 1 —3—-+v1+4e
" ’ - _
y'(z) + Y (z) + p C))y(ac) EPEEL where ¢ —
The asymptotic expansion solution is given by:
1 € -
=—+- —)+0
y(@) = 5=+ zeap(—) + 0(e)

The numerical results are given in tables 3(a), 3(b) for ¢ = 1073and ¢ = 10™*
respectively.

5. Right boundary layer

Finally, we considered the following singular perturbation problem with mixed
boundary conditions:

ey’(z) +a(z)y (z) + b(z)y(z) = f(z); 2 € [0, 1] (19)

with
a19(0) + a2y/(0) = o, (20a)
and, a3y(l) +asy'(1) =B (20b)

where ¢ is a small positive parameter(0 < € << 1) and a;,¢ = 1,..,4,a, ( are
known constants. We assume that a(z),b(z) and f(z) are sufficiently contin-
uously differentiable functions in [0,1]. Further more, we assume that a(z) <
M < Othroughout the interval [0,1], where M is some positive constant. This
assumptions merely implies that the boundary layer will be in the neighborhood
ofz =1.

The evaluation of the right-end boundary layer problem (19)-(20) is similar to
that of the left-end boundary layer but there are some differences worth noting.
Let § be a small deviating argument (0 < § << 1). By using Taylor series
expansion of order 2 in the neighborhood of the point z, we get

2

)
e +8) ~y(a@) + 0/ (@) + v (o) (1)
Substituting equation (21) in to equation (19), we get
26y’ (z + 8) — 2ey(z) — 268y’ (z) + 6%a(z)y (x) + 82b(z)y(z) = 62 f(z)  (22)
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Now we rewrite equation (22) in the form

Y (@) = p(z)y(z + 6) + q(z)y(z) +r(x), for 0 <z < (1-4) (23)
where 9
p(z) = a(z) — 268 (24a)
g(z) = ——~—5222&;5 _b(;g 5 (24b)
2
andr(z) = 3_2%—925_6' (24¢)

Equation (23) is a first order differential equation replacing the second order
differential equation (19) with a small deviating argument. Transition from (19)
to (23) is admitted, because of the condition that § is small(0 < § << 1).
This replacement is significant from the computational point of view. Further
theoretical discussion and details on the validity of this transition can be referred
in Elsgolts and Norkin[4].

Now we divide the interval [0,1] in to N equal subintervals of mesh size h=1/N
so that z; = h,i = 0,1,2,..N. Integrating equation (23) in the subinterval
[zi-1,2:],4=0,1,2,, N, we get

o) ~sli) = [ palule+0) +alohle) +r@llde @5)

Using the Trapezoidal formula for evaluating the integral approximately, we get

y(zi) ~ y(zi-1) = g[p(x,)y(xz + 0+ p(ri)y(zi—1 + )

3l + alzi)al@s)] + o) 4] (26

Again, we make use of the Taylor series expansion of order 1 on y(z + J) and we
get

y(x +8) = y(z) + oy (2) (27)
Approximating y'(z) by linear interpolation, (27) can be described as

o +0) my(e) + o ATHTYE 0 Dy Sy e

Similarly

y(z;) — 3/(«%‘-1)] =1

i +0) mu(air) + oL — @) + 2w (@)
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Substituting equations (28) and (29) in (26) and rearranging, we get

y(zi) — y(zi-1)
= pla)I( = Dylze) + 2w + opl@)l(1 ~ Dyle) + Dulrn)]

2 ol (o) +aleyled] + Slra) + riz)]
y(zi) — y(zi-1)
h J ) h )

= 5(L= 2 P(@i-1)y(@i-1) + 5p(zi-1)y(zi1) + 5 (1 = )p(@)y(z:)

op(ey@) + Dol u(ei) + azu(e) + (o) @) (0

Equation (30) can be rewritten in a three-term recurrence relationship as
follows:

Eyi—1 — Fiyi + Giyiy1 = H;,i=0,1,2, ., N (31)
where
h 5 h

B =—-1- 5(1 - E)pi—l - 5%‘—1, (32a)

é h é h
F=-1+ FPi-1 + 5(1 - E)pi + 5% (32b)

)
G; = —gPis (32c)

h

H, = ~2-(T‘i -+ T¢_1) (32d)

and y; = y(z:),pi = p(xi), ¢ = q(x:) and r; = r(z;). Equation (31) gives a
system of N4 1 equations with N+3 unknowns’ 33 to yy and the unwanted
unknowns’ y_1 and yny+1. To eliminate the unknowns, y—1 and yn+1, we make
use of the equations in (19) given as boundary conditions in mixed form. By
employing the second order central difference approximation in (19),we get

ay(0) + 2L ") = o (33)
and azy(l) + a4(EN+~12’E%l )= 8. (33b)
From (33) we have
2ha 2ha
Y1 = o+ — —, (34a)
ag ag
2h, 2ha
and yni+i = —ﬁqu - 2y (34b)
[¢7] a4

Making use of (34a) in the first equation of the recurrence relation (31) at
i = 0,and(34b) in the last equation of the recurrence relation (31) at ¢ =
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N respectively, we get

2ha 2ho
(—‘—lEo - Fo) Yo + (Eo + Go)yr = Ho+ —Ep

a2 @2 (352)
2ha 2h
and (En+ GN)yn—1— (TEGN + FN) yn = Hy — E?GN
(35b)

Now, equations (31) and (35) give an N+1 by N+1 tri-diagonal system which
can be solved by using Thomas Algorithm.

Repeat the numerical scheme for different choice of §(deviating argument, satis-
fying the condition 0 < § < 1), until the solution profile do not differ materially
from iteration to iteration. For computational point of view, we use an absolute
error criterion, namely

ly" (@) - y™ (@) <o for 0<z <1 (36)
where y™ is the solution for the mth iterate of § ando is the prescribed tolerance
bound.

6. Examples with right boundary layer
The applicability of the present method is demonstrated by solving two right-

end boundary layer problems.

Example 6.1. Consider the following singular perturbation problem

ey’(z) +y/(z) =3 - 22 € [0,1]
with y(0) — ey’(0) = 1 and /(1) = 1. The exact solution is given by :
-1
yr)=2z(83—-z-2)+¢ [3 -2 {1 - e:cp( - (m—e—)—)H

The numerical results are given in tables 4(a), 4(b) for & = 10~3and ¢ = 10~*
respectively.

Example 6.2. Consider the following singular perturbation problem from Dorr
et al([2],page80 with a=1,n=1).
&y'(z) — ¥/ (z) —y(z) = 0,z € [0,1]
with y(0) —ey’(0) = 1 and (1) = 0. The exact solution is given by :
myeM® — mge(mi(z=1)+ma)

y(e) = mi(1 — emg) — ma(1 — emy)elma—ma)
14 /(14 4e) and g = 1-«\/22-}—46)'

where m; = 5
€

The numerical results are given in tables 5(a), 5(b) for ¢ = 10~3and ¢ = 10~*
respectively.
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7. Discussion and conclusions

The numerical integration method developed by Y.N. Reddy and K.A. Reddy
[10] is extended for general singularly perturbed two point boundary value prob-
lems with mixed boundary conditions of both left and right end boundary layer.
The original second order differential equation is replaced by an approximate
first order differential equation with a small deviating argument. By using the
trapezoidal formula we obtain a three term recurrence relation, which is solved
using Thomas Algorithm To demonstrate the applicability of the method, we
have solved four linear (two left and two right end boundary layer) and one
nonlinear problems. From the results, it is observed that the present method
approximates the exact or the asymptotic expansion solution very well.

Table 1a Numerical Results of Example 3.1,e = 1073, h = 1072

x y(x){ 6=0.008) y(x}(6=0.009) y(x){ §=0.01) | Exact Solution
0.00 0.3687875 0.3686524 0.3685414 0.3682464
0.02 0.3753995 0.3753455 0.3753010 0.3753034
0.04 0.3829635 0.3829122 0.3828695 0.3828774
0.06 0.3906901 0.3906389 0.3905964 0.3906043
0.08 0.3985727 0.3985217 0.3984792 0.3984870
0.10 0.4066144 0.4065635 0.4065210 0.4065289
0.20 0.4493231 0.4492731 0.4492313 0.4492391
0.30 0.4965177 0.4964693 0.4964289 0.4964364
0.40 0.5486692 0.5486234 0.5485852 0.5485923
0.50 0.6062986 0.6062564 0.6062212 0.6062276
0.60 0.6699811 0.6699437 0.6699126 0.6699183
0.70 0.7403525 0.7403215 0.7402957 0.7403002
0.80 0.8181153 0.8180925 0.8180734 0.8180766
0.90 0.9040459 0.9040332 0.9040226 0.9040241
1.00 0.9990022 0.9990020 0.9990019 0.9990014

Tablelb Numerical Results of Example3.1, € = 1074 7 = 1072

x y(x)(6=0.0008) y(x)(6=0.0009) | y(x)(6=0.001) | Exact Solution
0.00 0.3691142 0.3639860 0.3688707 0.3679162
0.02 0.3757321 0.3756852 0.3756364 0.3753104
0.04 0.3833029 0.3832588 0.3832117 0.3828913
0.06 0.3910365 0.3909924 0.3909455 0.3906255
0.08 0.3989262 0.3988822 0.3988353 0.3985159
0.10 0.4069751 0.4069313 0.4068844 0.4065656
0.20 0.4497223 0.44967920 0.4496332 0.4493200
0.30 0.4969594 0.4969178 0.4968733 0.4965704
0.40 0.5491581 0.5491188 0.5490766 0.5487896
0.50 0.6068397 0.6068034 0.6067645 0.6065002
0.60 0.6705798 0.6705477 0.6705134 0.6702796
0.70 0.7410150 0.7409884 0.7409600 0.7407661
0.80 0.8188484 0.8188289 0.8188080 0.8186648
0.90 0.9048572 0.9048464 0.9048349 0.9047555
1.00 0.9999001 0.9999000 0.9999001 0.9998993
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Table 2a Numerical Results of Example 3.2,e = 1073, h = 1072

X y(x)(6=0.008)y(x)(6=0.009)y(x)(6==0.01)| Exact
Solution

0.00 2.0005026 | 2.0007796 | 2.0010011 | 2.0009999
0.02 1.9801470 | 1.9804195 | 1.9806374 | 1.9806379
0.04 1.9589970 | 1.9592639 | 1.9594774 | 1.9594780
0.06 1.9370470 | 1.9373084 | 1.9375174 | 1.9375180
0.08 1.9142970 | 1.9145528 | 1.9147575 | 1.9147580
0.10 1.8907470 | 1.8909973 | 1.8911974 | 1.8911980
0.20 1.7609971 | 1.7612195 | 1.7613975 | 1.7613980
0.30 1.6112471 | 1.6114417 | 1.6115975 | 1.6115980
0.40 1.4414971 | 1.4416640 | 1.4417975 | 1.4417982
0.50 1.2517470 | 1.2518862 | 1.2519976 | 1.2519983
0.60 1.0419971 |1.0421085 | 1.0421976 | 1.0421985
0.70 0.8122472 | 0.8123308 | 0.8123977 | 0.8123989
0.80 0.5624973 | 0.5625531 | 0.5625978 | 0.5625992
0.90 0.2927473 | 0.2927755 | 0.2927979 | 0.2927996
1.00 0.0029975 | 0.0029978 | 0.0029980 | 0.0030000

Table 2b Numerical Results of Example 3.2,¢ = 1074, h = 102

X y(x)(6=0.0008)jy(x)(6=0.0009)| y (x)(6=0.001) | Exact
Solution

0.00 | 1.9978049 1.9980813 1.9983028 2.0000999
0.02 | 1.9774493 1.9777213 1.9779392 1.9797039
0.04 | 1.9562993 1.9565657 1.9567792 1.9585080
0.06 | 1.9343493 1.9346102 1.9348192 1.9365120
0.08 | 1.9115993 1.9118546 1.9120593 1.9137160
0.10 | 1.8880492 1.8882991 1.8884993 1.8901199
0.20 | 1.7582994 1.7585213 1.7586993 1.7601399
0.30 | 1.6085494 1.6087435 1.6088994 1.6101600
0.40 | 1.4387994 1.4389658 1.4390993 1.4401802
0.50 | 1.2490493 1.2491881 1.2492994 1.2502004
0.60 | 1.0392994 1.0394104 1.0394994 1.0402205
0.70 | 0.8095495 0.8096327 0.8096995 0.8102409
0.80 | 0.5597996 0.5598550 0.5598996 0.5602612
0.90 | 0.2900496 0.2900774 0.2900997 0.2902816
1.00 | 0.0002997 0.0002998 0.0002998 0.0003019
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Table 3a Numerical Results of Example 4.1,e = 1073, h = 1072

X (x)(6=0.001) y(x)(0=0.008) |y(x)(6=0.01)| Dorr
Solution
0.00 0.4997527 | 0.4997451 0.4997449 | 0.5002500
0.02 0.5047930 | 0.5047898 0.5047898 | 0.5050505
0.04 0.5099413 | 0.5099381 0.5099382 | 0.5102041
0.06 0.5151957 | 0.5151925 0.5151926 0.5154639
0.08 0.5205596 | 0.5205563 0.5205564 | 0.5208333
0.10 0.5260363 0.5260330 0.5260331 0.5263158
0.20 0.5552444 | 0.5552410 0.5552409 | 0.5555556
0.30 0.5878865 | 0.5878832 0.5878832 | 0.5882353
0.40 0.6246065 0.6246033 0.6246030 0.6249999
0.50 0.6662191 | 0.6662161 0.6662157 | 0.6666666
0.60 0.7137724 | 0.7137697 0.7137693 | 0.7142856
0.70 0.7686363 | 0.7686335 0.7686333 | 0.7692305
0.80 0.8326367 | 0.8326349 0.8326344 | 0.8333330
0.90 0.9082636 | 0.9082624 0.9082624 | 0.9090905
1.00 0.9990018 | 0.9990019 0.9990019 | 0.9999993
Table 3b Numerical Results of Example4.1,e = 1074, h = 1072
X y(x)(6=0.0001)ly(x)(6=0.0008)| y(x)(6=0.001) | Dorr
Solution
0.00 0.4999696 0.4999691 0.4999692 0.5000250
0.02 0.5050191 0.5050189 0.5050191 0.5050505
0.04 0.5101721 0.5101719 0.5101721 0.5102041
0.06 0.5154313 0.5154312 0.5154313 0.5154639
0.08 0.5208001 0.5207999 0.5208001 0.5208333
0.10 0.5262818 0.5262817 0.5262820 0.5263158
0.20 0.5555179 0.5555178 0.5555184 0.5555556
0.30 0.5881938 0.5881934 0.5881942 0.5882353
0.40 0.6249537 0.6249532 0.6249543 0.6249999
0.50 0.6666148 0.6666143 0.6666154 0.6666666
0.60 0.7142276 0.7142271 0.7142276 0.7142856
0.70 0.7691647 0.7691648 0.7691647 0.7692305
0.80 0.8332583 0.8332582 0.8332574 0.8333330
0.90 0.9090045 0.9090048 0.9090042 0.9090905
1.00 0.9999000 0.9999000 0.9999000 0.9999993
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Table 4a Numerical Results of Example 6.1,e = 1073, h = 102

X y(x)(6=0.008)y(x)(6=0.009]y(x)(d=0.01)| Exact
Solution

0.00 0.0029709 | 0.0029712 | 0.0029714 | 0.0029980
0.10 0.2925916 | 0.2926173 | 0.2926378 | 0.2927980
0.20 0.5623413 | 0.5623950 | 0.5624378 | 0.5625980
0.30 0.8120908 | 0.8121728 | 0.8122379 | 0.8123980
0.40 1.0418402 | 1.0419507 | 1.0420380 | 1.0421977
0.50 1.2515895 | 1.2517287 | 1.2518380 | 1.2519976
0.60 1.4413388 | 1.4415061 | 1.4416381 | 1.4417975
0.70 1.6110878 | 1.6112844 | 1.6114382 | 1.6115974
0.80 1.7608367 | 1.7610619 | 1.7612383 | 1.7613974
0.90 1.8905855 | 1.8908401 | 1.8910384 | 1.8911973
0.92 1.9141355 | 1.9143956 | 1.9145985 | 1.9147574
0.94 |1.9368851 |1.9371511 |1.9373585 | 1.9375173
0.96 1.0588349 | 1.9501066 | 1.95903185 | 1.9594773
0.98 1.9799848 | 1.9802620 | 1.9804785 | 1.9806373
1.00 2.0003402 | 2.0006220 | 2.0008421 | 2.0009992

Table 4b Numerical Results of Example 6.1, = 10™4, h = 102

X y(x)(6=0.0008)ly(x)(d=0.0009)y(x)(6=0.001] Exact
Solution

0.00 | 0.0002953 0.0002957 0.0002959 | 0.0003000
0.10 | 0.2899159 0.2899417 0.2899623 | 0.2902800
0.20 | 0.5596657 0.5597195 0.5597622 | 0.5602601
0.30 | 0.8094152 0.8094972 0.8095623 | 0.8102400
0.40 | 1.0391645 1.0392751 1.0393623 | 1.0402197
0.50 | 1.2489139 1.2490530 1.2491623 | 1.2501996
0.60 | 1.4386631 1.4388305 1.4389625 | 1.4401795
0.70 | 1.6084121 1.6086087 1.6087625 | 1.6101594
0.80 | 1.7581611 1.7583864 1.7585627 | 1.7601392
0.90 | 1.8879100 1.8881645 1.8883628 | 1.8901193
0.92 | 1.9114598 1.9117200 1.9119228 | 1.9137152
0.94 | 1.9342095 1.9344755 1.9346828 | 1.9365113
0.96 | 1.9561592 1.9564310 1.956643 1.9585073
0.98 | 1.9773091 1.9775866 1.9778029 | 1.9797033
1.00 | 1.9976645 1.9979465 1.9981666 | 2.0000994
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Table 5a Numerical Results of Example 6.2,e = 1073, h = 10~2

X (x)(0=0.008)y(x)(0=0.009) y(x)(6=0.01)| Exact
Solution

0.00 |0.9990109 | 0.9990106 | 0.9990104 | 0.9990020
0.10 | 0.9041042 | 0.9040911 | 0.9040794 | 0.9040246
0.20 | 0.8181680 | 0.8181447 | 0.8181243 | 0.8180769
0.30 | 0.7404002 | 0.7403688 | 0.7403412 | 0.7403005
0.40 | 0.6700244 | 0.6699865 | 0.6699534 | 0.6699185
0.50 | 0.6063378 | 0.6062952 | 0.6062578 | 0.6062279
0.60 | 0.5487046 | 0.5486584 | 0.5486181 | 0.5485924
0.70 | 0.4965496 | 0.4965009 | 0.4964584 | 0.4964366
0.80 | 0.4493520 | 0.4493017 | 0.4492577 | 0.4492393
0.90 | 0.4066406 | 0.4065894 | 0.4065446 | 0.4065291
0.92 | 0.3985984 | 0.3985471 | 0.3985022 | 0.3984872
0.94 | 0.3907152 | 0.3906639 | 0.3906189 | 0.3906045
0.96 | 0.3829882 |0.3829367 | 0.3828917 | 0.3828776
0.98 | 0.3754236 | 0.3753694 | 0.3753226 | 0.3753037
1.00 | 0.3688113 | 0.3686759 | 0.3685626 | 0.3682464

Table 5b Numerical Results of Example 6.2, = 1074, h = 1072

X y(x)(0=0.0008))y(x)(0=0.0009); y(x)(6=0.001)| Exact
Solution

0.00 | 0.9999009 0.9999010 0.9999009 0.9999000
0.10 | 0.9049085 0.9048971 0.9048852 0.9047559
0.20 | 0.8188949 0.8188747 0.8188534 0.8186653
0.30 | 0.7410570 0.7410300 0.7410012 0.7407664
0.40 | 0.6706179 0.6705853 0.6705508 0.6702799
0.50 | 0.6068740 0.6068375 0.6067982 0.6065005
0.60 {0.5491892 0.5491496 0.5491071 0.5487899
0.70 | 0.4969875 0.4969457 0.4969009 0.4965706
0.80 | 0.4497477 0.4497045 0.4496581 0.4493202
0.90 | 0.4069981 0.4069541 0.4069070 0.4065291
0.92 | 0.3989487 0.3989047 0.3988574 0.3984872
0.94 | 0.3910585 0.3910144 0.3909671 0.3906045
0.96 | 0.3833245 0.3832803 0.3832330 0.3828776
0.98 | 0.3757532 0.3757064 0.3756571 0.3753037
1.00 | 0.3691349 0.3690068 0.3688911 0.3682464
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