• 제목/요약/키워드: two-dimensional position error

검색결과 70건 처리시간 0.029초

스캐닝 방식 XY 스테이지의 운동오차 분석 (The Analysis of Motion Error in Scanning Type XY Stage)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어 (Fuzzy control of a robot manipulator in Cartesian space)

  • 곽희성;강철구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

평면 XY 스테이지용 공기베어링 안내면 오차 평가 (The evaluation of aerostatic guide-ways for planar XY stage)

  • 황주호;박천홍;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.141-142
    • /
    • 2006
  • This paper describes estimation method for 2D position error of planar XY stage from measured profiles of guide-ways. The XY stage usually moves along its guide ways. The motion error of each stage has effect on 2D position errors of XY stages and affected mainly by profiles of guide-ways. To estimate 2D position error and flatness of stages, the profiles of guide-ways were measured and used in motion error estimation.

  • PDF

실시간 위치추적 시스템에서 높이 오차를 고려한 TDOA 측정치 기반 테일러 급수 설계 방법 (TDOA Measurement Based Taylor Series Design Method Considering Height Error for Real-Time Locating Systems)

  • 강희원;황동환;박찬식
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.804-809
    • /
    • 2010
  • This paper proposes a Taylor-series design method which reduces the height error of the tag when readers are arranged at the same height in 3-dimensional space. The proposed method consists of two steps. Firstly, the planar position is estimated by the Taylor-series method using the TDOA measurement. Next, the height is estimated from the estimated planar position. In order to show the validity of the proposed method, computer simulations were performed for the static case and linear trajectory of the tag. Results show that the proposed method gives convergent estimated position and better height estimate than the Taylor series method.

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬 (Fuzzy Control Algorithm Eliminating Steady-state Position Errors of Robotic Manipulators)

  • 강철구;곽희성
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.361-368
    • /
    • 1997
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is propeosed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Although the number of input variables of the fuzzy controller is increased from two to three, the number of fuzzy control rules is just increased by two. Three dimensional look-up table is used to reduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

점토(粘土) 지반상(地盤上)의 성토(盛土)의 압밀침하(壓密沈下) 분석(分析) (Analysis for Consolidation-Settlement of Embankment on Clay Layers)

  • 정성관;권무남
    • Current Research on Agriculture and Life Sciences
    • /
    • 제2권
    • /
    • pp.98-108
    • /
    • 1984
  • Generally, in case of constructing the embankments on the soft clay layers, one-dimensional consolidation settlement under the assumption of a middle position stress in a single layer makes a great difference with the integral value, ie. the final settlement. Consequently, to find how many equal segments of the soft clay layer are needed to converge into the integral value and which position should be taken as a position of mean stress, authors compared the theoretical value of the settlement due to one-dimensional consolidation with the practical value of the settlement due to two dimensional consolidation. The obtained results are as follows. 1) The practical value of the two-dimensional consolidation settlement can be estimated by the 74-83% theoretical value of the one-dimensional consolidation settlement. 2) When the soft clay layer was cut into 8-16 equal segments according to the depth, one-dimensional consolidation settlement converge into the integral value. 3) Assuming a total soft clay layer as a single one, the depth of a mean stress position is 0.29-0.37 of the thickness of the total soft clay layer. 4) The Hyperbola Method which presumes the long-term settlement from the short-term practical value of settlement is credible, because all practical value of the settlement are in safe side of the standard error of estimation and the correlation coefficient is up to 0.95.

  • PDF

참조패턴 기반의 2차원 변위 측정 방법론 (Measuring Methods for Two-dimensional Position Referring to the Target Pattern)

  • 정광석;이상헌;박성준
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

Machining center에서 2차원 원호보간의 복합오차 검출 및 수치제어에 의한 고정밀도 가공방법에 관한 연구 (A study on detection of composite errors and high precision cutting method by numerical control of two-dimensional circular interpolation in machining centers)

  • Kim, J.S.
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.117-126
    • /
    • 1994
  • This paper describes an application step of a $R^{-{\theta}}$ method which measures circular movements in machining centers. The detection of composite errors of circular movements and a high precision cutting method in machining centers were investigated by the analysis of data measured by $R^{\theta }$method which can detect the rotating angle and is applicable to variable measuring radius. When the error by squareness error and unbalance of position-loop-gain were mixed, the detection method of each error was proposed. Although the errors by squarenss error and backlash compensation were mixed, the errors by squareness error be detected. If the errors by unbalance of position-loop-gain and backlash compensation were mixed, the errors by unbalance of position-loop-gain could not detected. A high precision cutting mehod, which uses the NC program compensated by using feed-back data from error measured by the $R^{\theta }$method, was proposed.

  • PDF

CMM을 이용한 3자유도 병렬기구 위치 오차의 정밀 평가 기법 (Precision Evaluation Method for the Positioning Error of Three-DOF Parallel Mechanism using Coordinate Measuring Machine (CMM))

  • 권기환;박재준;이일규;조남규;양현익
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.99-109
    • /
    • 2004
  • This paper proposes precision evaluation method for the positioning error of three-DOF translational parallel mechanism. The proposed method uses conventional CMM as metrology equipment to measure the position of end-effector. In order to obtain accurate measurement data from CMM, the transform relationship between the coordinate system of the parallel mechanism and the CMM coordinate system must be identified. For this purpose, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate error components at any arbitrary position of the end-effector is derived. In addition, mathematical fitting models to represent the position error components in the two-dimensional workspace of the parallel mechanism are also constructed based on response surface methodology. The proposed error evaluation method proves its effectiveness through the experimental results and its application to real three-DOF parallel mechanism.

3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구 (Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis)

  • 이석천;김재은;이상종
    • 항공우주시스템공학회지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.