Correlation is a technique used to measure the strength or the degree of closeness of the linear association between two quantitative variables. Common misuses of this technique are highlighted. Linear regression is a technique used to identify a relationship between two continuous variables in mathematical equations, which could be used for comparison or estimation purposes. Specifically, regression analysis can provide answers for questions such as how much does one variable change for a given change in the other, how accurately can the value of one variable be predicted from the knowledge of the other. Regression does not give any indication of how good the association is while correlation provides a measure of how well a least-squares regression line fits the given set of data. The better the correlation, the closer the data points are to the regression line. In this tutorial article, the process of obtaining a linear regression relationship for a given set of bivariate data was described. The least square method to obtain the line which minimizes the total error between the data points and the regression line was employed and illustrated. The coefficient of determination, the ratio of the explained variation of the values of the independent variable to total variation, was described. Finally, the process of calculating confidence and prediction interval was reviewed and demonstrated.
Communications for Statistical Applications and Methods
/
제26권1호
/
pp.47-55
/
2019
It is important to identify informative variables in high dimensional data analysis; however, it becomes a challenging task when covariates are contaminated by measurement error due to the bias induced by measurement error. In this article, we present a two-step approach for variable selection in the presence of measurement error. In the first step, we directly select important variables from the contaminated covariates as if there is no measurement error. We then apply, in the following step, orthogonal regression to obtain the unbiased estimates of regression coefficients identified in the previous step. In addition, we propose a modification of the two-step approach to further enhance the variable selection performance. Various simulation studies demonstrate the promising performance of the proposed method.
This study attempts to present the linear regression analysis that involves more than one regressor variable, because regression analysis is the most widely used statistical technique for describing, predicting and estimating the relationships between given data. The model of multiple linear regression may be solved directly by the two linear programming methods, i.e., to minimize the sum of the absolute deviation (MSD) and to minimize the maximum deviation(MMD). In addition, some results was compared to each techniques for accuracy and tested to the validity of statistical meaning.
회귀분석은 반응변수와 예측변수들 간의 관련성을 설명하기 위해 사용되는 잘 알려진 통계 테크닉이다. 특히 연구자들은 두 개의 독립 모집단에서의 모형들의 회귀계수들(절편과 기울기)을 비교하는데 관심이 있다. Gregory Chow에 의해 제안된 Chow 검정은 회귀모형들을 비교하고 선형회귀모형 안에 구조적 브레이크가 존재하는지를 검정하기 위해 보통 사용되는 방법들 중의 하나이다. 본 연구에서는 두 독립 선형회귀모형들의 등가성을 검정하기 위해 퍼뮤테이션 방법을 제안하고 Chow 검정과 비교한다. 그리고 퍼뮤테이션 검정과 Chow 검정의 검정력을 조사하기 위해 시물레이션 연구를 진행하였다.
Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.
Communications for Statistical Applications and Methods
/
제22권1호
/
pp.41-54
/
2015
In this article, we propose nonconcave penalties on a reduced-rank regression model to select variables and estimate coefficients simultaneously. We apply HARD (hard thresholding) and SCAD (smoothly clipped absolute deviation) symmetric penalty functions with singularities at the origin, and bounded by a constant to reduce bias. In our simulation study and real data analysis, the new method is compared with an existing variable selection method using $L_1$ penalty that exhibits competitive performance in prediction and variable selection. Instead of using only one type of penalty function, we use two or three penalty functions simultaneously and take advantages of various types of penalty functions together to select relevant predictors and estimation to improve the overall performance of model fitting.
Park, Jin-Young;Kim, Seo-Hoon;Jang, Cheol-Young;Kim, Jong-Hun;Lee, Seung-Bok
KIEAE Journal
/
제15권5호
/
pp.13-20
/
2015
Purpose: In order to upgrade the energy performance of existing building, energy audit stage should be implemented first because it is useful method to find where the problems occur and know how much time and cost consumption for retrofit. In overseas researches, three levels of audit is proposed whereas there are no standards for audit in Korea. Besides, most studies use dynamic simulation in detail like audit level 3 even though the level 2 can save time and cost than level 3. Thus, this paper focused on audit level 2 and proposed the audit method with the simple linear regression analysis model. Method: Two parameters were considered for the simple regression analysis, which were the monthly electric use and the mean outdoor temperature data. The former is a dependent variable and the latter is a independent variable, and the building's energy performance profile was estimated from the regression analysis method. In this analysis, we found the abnormal point in cooling season and the more detailed analysis were conducted about the three heat source equipments. Result: Comparing with real and predicted models, the total consumption of predicted model was higher than real value as 23,608 kWh but it was the results that was reflected the compulsory control in 2013. Consequently, it was analyzed that the revised model could save the cooling energy as well as reduce peak electric use than before.
KSR-III 비행용 액체추진제 로켓엔진의 각 성능 변수 간 상관관계를 파악하기 위하여, 엔 진 지상연소시험의 결과에 대한 분석이 수행되었다. 내열재 연소실의 삭마에 따른 변화를 고려하였으며, 산화제/연료비에 의한 변화를 무시한 선형 회귀분석과 이를 포함한 이변수 이차 회귀분석이 수행되었다. 선형 회귀분석은 간단하면서도 분석영역 내에서 1% 이내의 오차율을 가지는 매우 실용적인 방법임을 보여주었다. 또한 이변수 이차 회귀분석 결과는 분석영역 내에서 매우 높은 정확도의 예측이 가능하였으며, KSR-III 엔진의 추력 (혹은 비추력) 및 연소실 압력 (혹은 특성속도)에 대한 최적 산화제/연료비가 각각 2.22 와 2.17 인 것으로 분석되었다.
로지스틱 회귀모형에서 결정계수는 선형 회귀모형보다 다양하게 정의되며 그 값들도 매우 작아 로지스틱 회귀모형 평가기준으로 사용되는 통계량이 라고 할 수 없다. Liao와 McGee(2003)는 부적절한 설명변수의 추가 또는 표본크기의 변화에 민감하지 않은 두 종류의 수정 결정계수를 제안하였다. 본 연구에서는 실제자료에 적용한 로지스틱 회귀모형에서 수정 결정계수를 포함한 네 종류의 결정계수들을 변수선택의 기준으로 사용하여 기존의 변수선택 방법인 전진선택, 후진제거, 단계적 선택방법, AIC 통계량 등을 사용한 방법들과 비교하여 그 적절함과 효율성을 토론한다.
Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
대한수학회논문집
/
제31권1호
/
pp.185-198
/
2016
Regression analysis is an analyzing method of regression model to explain the statistical relationship between explanatory variable and response variables. This paper propose a fuzzy regression analysis applying Theils method which is not sensitive to outliers. This method use medians of rate of increment based on randomly chosen pairs of each components of ${\alpha}$-level sets of fuzzy data in order to estimate the coefficients of fuzzy regression model. An example and two simulation results are given to show fuzzy Theils estimator is more robust than the fuzzy least squares estimator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.