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ON THEIL’S METHOD IN
FUZZY LINEAR REGRESSION MODELS

SEUNG HOE CHoi, HYE-YOUNG JUNG, W0O0O-JOO LEE, AND JIN HEE YOON

ABSTRACT. Regression analysis is an analyzing method of regression
model to explain the statistical relationship between explanatory variable
and response variables. This paper propose a fuzzy regression analysis
applying Theils method which is not sensitive to outliers. This method
use medians of rate of increment based on randomly chosen pairs of each
components of a-level sets of fuzzy data in order to estimate the coeffi-
cients of fuzzy regression model. An example and two simulation results
are given to show fuzzy Theils estimator is more robust than the fuzzy
least squares estimator.

One of the central objectives of mathematics is to interpret natural or so-
cial phenomena with mathematical tools including numbers, signs, and axioms.
Uncertainties may occur during the process of transforming a natural or social
phenomenon into a mathematical problem. These uncertainties involve two
distinctive types: stochastic uncertainty whose uncertainty can be naturally
resolved as time passes, and fuzzy uncertainty whose uncertainty cannot be
resolved even with the passage of time. Of the two types of uncertainties,
the study on stochastic uncertainty is particularly active that it is now ap-
plied in numerous fields. Zadeh introduced fuzzy theory in explaining fuzzy
uncertainty with respect to ambiguity and vagueness. He further applied this
theory to establish a necessary system for handling information expressed in
such ambiguous or vague manners ([18], [19]).

Tanaka established fuzzy regression model as an attempt to explicate the
relationship among variables that are ambiguously or vaguely presented ([15],
[16]). Fuzzy regression model can be classified into two categories depending on
the response function which may be known or unknown. In this case, the former
and latter are called parametric model and non-parametric model, respectively.
In addition, the method to estimate the fuzzy regression model can be classi-
fied into two kinds methods in terms of minimization. One is the numerical
method which minimize the sum of spreads of estimated fuzzy numbers, the
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other is the statistical method which minimize the sum of distance between ob-
served and estimated data. The fuzzy least squares estimation (LSE) ([3], [9])
is one of the popular statistical method and it has a weakness that is sensitive
to outlier which is an observation point that is distant from other observa-
tions. Outliers are frequently observed in fuzzy regression due to ambiguity
and vagueness. Therefore some alternative robust methods are needed to make
up for this weak point. Theil first introduced his method in 1950, since Theil’s
method based on median is not sensitive to outliers. Afterward, various kinds
of Theil’s methods have been suggested in many studies ([10], [13], [17]), such
as regression, ANOVA and financial studies. In this paper we estimate para-
metric fuzzy regression model through applying Theils method using median
in accordance with mode and end points of the alpha-level sets. We propose an
example using a data which has been frequently used in many studies in order
to compare the fuzzy regression model derived from the suggested method and
the least squares method. In addition we propose two simulation studies which
show that fuzzy Theil’s method is more robust than least squares method ([1],
[4], [9], [14]) when dataset includes fuzzy outliers.

1. Fuzzy regression model

Tanaka first introduced the fuzzy regression model ([15], [16]):

(1) Y(X;) =400 AiXi & - ®A4,Q X,
where X;; is the j-th observation of i-th explanatory variable, A; is the fuzzy
regression coefficient, and Y (X;) is the response variable (i = 1,...,n). And

@ and ® which are given in (1) are the addition and multiplication of fuzzy
numbers, respectively. Several fuzzy regression models have been introduced.
More popular models are:

Y(z)) =A@ A1 @z & ® Ap @ T4
which has crisp independent variables, and
V(Xj)=a®a @Xa® - ®ap® Xy

which has crisp regression coefficients. The fuzzy regression model (1) which
has fuzzy coefficients and fuzzy dependent variables is not frequently mentioned
due to its complexity in analyzing. In this paper, the model (1) is considered
based on the operations a-level sets and Theil’s method.

One of main purpose of fuzzy regression analysis is to minimize the errors
between fuzzy observations and fuzzy predicted values based on fuzzy obser-
vations {(X;1,...,Xsp,Y;) @ = 1,...,n} ([3], [5], [10]). Fuzzy least squares
estimation using the distance between fuzzy observations to minimize these
errors is the popular method in fuzzy regression analysis. Fuzzy least squares
estimation is the popular method in fuzzy regression model. However, the
least squares estimation has a weakness that is sensitive to outliers. In addi-
tion, outliers are frequently observed in fuzzy regression due to ambiguity and
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vagueness. Therefore some alternative robust methods are needed to make up
for this weak point.

In addition, in order to estimate the variables which are expressed vaguely, it
is important to determine the membership functions for the forecasted values.
Hence, determining membership functions based on analysing the ambiguity
and vagueness is significant in fuzzy regression model.

Zadeh suggested the extension principle to define the membership functions
of a function of fuzzy numbers ([18], [19]). Furthermore, the extension principle
enables us to define all operations among fuzzy numbers. If X and Y are subsets
of real number, and f is a function from X to Y, f: X — Y, and A is a fuzzy
set on X. Then the membership function of f(A) can be defined

o (y) = sup,_ (o ia(z) if f7H(y) # o,
0 if f71(y) = ¢,
based on extension principle.

In addition, Zadeh suggested another important principle, the resolution
identity. The membership function p(z) of a fuzzy set A can be derived by a-
level set A, and characteristic function I4_ (z) based on the resolution identity
theorem. If the characteristic function 14 () of a-level set A, is defined by

s 1, ifz e A,,
4. (@) = {07 ifx & A,

the membership function of a fuzzy set A can be derived:
ja(@) = supfala, (@) : a € [0,1]}
using the resolution identity theorem. This explains that forecasting fuzzy data
can be implemented by estimating a-level set of observed fuzzy sets.
In this paper, the forecasted values are obtained through estimating the

membership functions using alpha-level sets and fuzzy regression models based
on given observed fuzzy data.

2. Fuzzy Theil’s method

One of main purpose of fuzzy regression analysis is to minimize the errors
between fuzzy observations and fuzzy predicted values based on fuzzy observa-
tions {(X;1,..., X4, Y:) 1 =1,...,n} ([3], [5], [10]). Fuzzy least squares esti-
mation using the distance between fuzzy observations to minimize these errors
is the popular method in fuzzy regression analysis. However, the least squares
estimation has a weakness that is sensitive to outliers. In addition, outliers
are frequently observed in fuzzy regression due to ambiguity and vagueness.
Therefore some alternative robust methods are needed to make up for this
weak point. Theil introduced a method which is not significantly affected by
some outliers to find a best fitted line of data points in a plane ([17]). Hus-
sain and Sprent applied Theil’s method to classical regression model after they
transformed the explanatory variables to orthogonal sets [6]. In this paper, we
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propose a fuzzy Theil’s method to analyze a fuzzy regression model (1), using
a-level sets

(2) {(le(a)77X1p(a)5}/l(a)) 7’:177’”}
of fuzzy observations. From the resolution identity, the multiple regression
model of a-level sets of left end points, {(Ix, (a),...,lx,, (@), ly,(a)) : i =

1,...,n}, can be obtained by

(3) Z Ux (@)la, (a

where Ix,,(a) = 0, and ly, (a), le (a), la, (a) are the left points of Y;, X,
and Ay respectively. After estimating the regression coefficients Ag(a) (k =
0,1,...,p) of model (3), the left endpoint ly,(a) of the a-level set of the de-
pendent variable Y; can be estimated using following steps:

Step 1. Use Gram-Schmidts process to transform the data set {lx, (a),...,
Ix,(a)} to orthogonal data set {Z1(«),..., Z,(a)} using following formular:

Ix, (@) if k=1,
(4) Zi(a) = = .
Ix, (« Z Projz, (a)(lx, (o)) if 1<k<p,
m=1
e (1x,(0), Zun(e)
Zm(a
P . _ X \&), Lm 7
ro]Zm(a)UXk (a)) <Zm(04), Zm(Ot)> m(a>7
Ix, (a) = (lek (a)7 o X, (Oz))
and
Zm (@) = (Zim (@), ..oy Zpm(@)).
Step 2. Set a new regression model based on {Z;(«),. .., Zy(®)} with new
coefficients 6 ().
() by, (@) = Oo(a) + 01() Zin (@) + - - - + bp() Zip(a).
The estimation of coefficients 0 («) (k = 1,...,p) can be obtained from fol-

lowing procedure.
2-1. Set 0120)(60 =0(k=1,...,p) and lgg)(a) = ly, ().
2-2. Set 59,@(0() to be the median of

a5
(6) X CZi(a) < Zijp(a), 1<i<j<ny,
dZ17k
where
0 0 0
dy) (o) =15 (0) = 1§ (o)

and
de‘jk(a) = Zjr(a) = Zig(a).
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2-3. Let
6. (@) = 6, (@) + 66" ()
and
() = 11 (a) — 66" () Zyi ()
respectively.
Generally,
07 (0) = 07" (a) + 00V ()
and
lg)(a) = l%fl)(a) - 591971)(0[)2“(04)
respectively.

2-4. Iterate above procedure until 0,(3 )(a) converges to a constant hy(«), let
the estimated coefficient 0y (a) be

ék(a):hk(oz), k=1,...,p.

That is,

) dy) (@ (s)

56" 50\°

(a) = { dzuk Z
(7) Zir(o) < Zjp(a), i:1,...,n—17j:i+17...,n},
(8) 1 (@) = 19(a Z 56 () Zii (),
(9) 01" (o) = Z 36, ()

s=0

Step 3. Use Gram-Schmidts process again to estimate l4, () based on
Op(@) (k=1,...,p)
O,() if k=0,

(10) pr_k =9 ; = (1 (@), Zp—1(a)) 2 )
bpk0) = D ey Opom(e) i 1<k <p—1.

m=0
The constant term of the fuzzy regression model (5) consisted of the a-level
sets of the independent and dependent variables can be estimated using the
mean or median of all estimated values.
And [, () is the median of

{ly;(a ZzAk a)lx, (@) i=1,...,n}
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or
Lag (@) = Iy, ( Z La, (@)lx,, (0

Step 4. Obtain the estimated output ly. («) based on the model

Z I, (a)lx,, (a

Step 5. Obtain the intermediate estimated values ly,(a) and Ty, (a) of
ly, (o)) and ry, («) following from Step 1 to Step 4 based on the observations

{Ux,(a),...lx,, (@), ly,(a) i =1,...,n}
and
{trx,(a),...,rx,, (@), ry, (@) i =1,...,n}.
Step 6. Estimated values of ly,(a) and ry,(a) are defined as following to
satisfy properties of fuzzy numbers:

Iy, (@) = min{ly, (@), Iy, (0)}
and
Py, (a) = max{Ty, (@), 7y, (0)}.
Step 7. Estimate the membership functions of Y; using

{(lAyi(ozk),ak) k= 1,...,8}
and

{(fyi(ak),ak) k= 1,...,8}
obtained from Step 1 to Step 6. For these, we apply the fuzzy Theil’s method
once more to estimate the membership functions.

Especially, Ix, (a) is equal to Zi(«) in the simple fuzzy linear regression
model
Yi(Xi) = Ao ® A1 ® X;.

This means the regression coefficient 6 (a) coincides with [4, (). Therefore
the estimate {4, (a) of 14, («) is derived from the median of

{ ly, (@) = ly, (o)

llx: (@) = Ix; (@)
In addition, [4, (o*) can be derived by
4, (o) =min{la, (), I, (@)} if o <a,

:1§i<j§n}.

and
la,(a*) = max{la, (@), la, (@)} if o >a,
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for a* which is not equal to previous a. Here, [, A, (@) is the median of

{ ly, (") = Iy, (a*)

| (a%) = Ux; ()]

:1§i<j§n}.

From the same procedure, the estimate 74, («) of the right end point r 4, (@)
for a-level set of A; can be derived. Therefore the estimate A; of Ay can be
obtained by above 7 steps after deriving 4, (@) and 74, ().

3. Numerical example and simulation study

In this chapter, we propose an example using simulated data. To compare
the efficiencies with Least Squares Estimation (LSE), we propose a new the
performance measure which is modified based on a measure introduced by Kim
and Bishu ([2], [8]). Kim and Bishu used an integration of the membership
functions to compare the accuracy of the developed fuzzy regression model.
They considered the difference between the membership values of the observed
fuzzy number Y; and the estimated fuzzy number f/l But, this measure of
performance has a weakness when Y; and Y; are not overlapped. Because
the value of the measure of performance will be the same regardless of between
two. In order to overcome this problem, we propose a new PMFD (Performance

Measure based on Fuzzy Distance), denoted by d(Y;,Y;), as follows:

e ’NY,-(I) —uyi(x)‘dm
J7o0 v () |dz

where Y; is the observed fuzzy output and Y; is the estimated fuzzy output,
and hq(A, B) = infye ginf,c ala — b).

The smaller the distance between two fuzzy numbers is, the closer the value
of (11) is to zero. Thus, we can define the measure of performance based on
fuzzy distance (MPFD) for the estimated fuzzy regression model as follows:

(11) + ha(Yi(0),Yi(0)),

(12) M(Y,Y) =

S|

and(n,fﬁ,)-
=1

Hence, we can assume that when the value of the performance measure in (12)
is the smallest, the accuracy of the method is the highest.

To compare the efficiency of the fuzzy regression model using Theil’s method,
we propose following example using the data which has been frequently used in
many studies. Two simulations studies are proposed using crisp independent,
and fuzzy independent variables respectively.

Example 1. Diamond [4] proposed following data to illustrate his approach
for dealing with the problem of fuzzy input-output data.
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TABLE 1. Data for Example 1.

Xi = (xi7l$'i7rmi)T Yi = (yi7lyi’ryi)T
T I Ty Y ly Ty
21.00 | 4.20 | 2.10 | 4.0 | 0.6 0.8
15.00 | 2.25 | 2.25 | 3.0 | 0.3 0.3
15.00 | 1.50 | 2.25 | 3.5 | 0.35 | 0.35
9.00 [ 1.35] 1.35 | 20| 04 0.4
12.00 | 1.20 | 1.20 | 3.0 | 0.3 0.45
18.00 | 3.60 | 1.80 | 3.5 | 0.53 0.7
6.00 | 0.60 | 1.20 | 2.5 | 0.25 | 0.38
12.00 | 1.80 | 2.40 | 2.5 | 0.5 0.5

CO J O UL i W N .

The fuzzy regression model based on the least squares estimation method is
as follows:

Y;FS = (1.375,0.346, 0.060) @ (0.120,0,0.014) ® X;.

The fuzzy regression models using Theil’s method based on

P
la, (o) = Med{ly, (o) — ZlAk(oz)lXik(oz) ci=1,...,n}
k=1
and
— p ~ —
le (a) = lYi (Oé) - Z lAk: (a)lxik (Oé)
k=1

are as follows:

v, = (0.5,0,0.4) @ (0.167,0.006,0) ® X;,

V72 = (0.75,0,0.545) & (0.167,0.006,0) ® X;,

Y"1 and Y;T2 can be obtained until ¥;! and ¥;7? get converged. Above results
are obtained after 4 iterations.

Fig. 1 shows the results of Theil’s methods Y72 when the constant term is
estimated by median.

Table 2 shows the errors of the fuzzy regression models based on the least
squares estimation and Theil’s method.

TABLE 2. Performance measure for Example 1.

MY, VE5) [ MY, V™) [ M(Y,772)
Total error 1.153 1.018 1.591

Following simulation studies show that proposed fuzzy Theil’s method is
more efficient than LSE when there is an outlier in data set. When we com-
pare the measure of performance, it is common to find the error between the
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FiGURE 1. Fitted line for Example 1.

estimated value and the actual value. But we propose another comparison
here that we compare the error between the estimated parameter and the true
parameter, which is more basic comparison. The comparison of the estimated
value and the actual value is to show how much the estimated model is close
to the true model, which can be different from the selection of data. However,
if we use comparison proposed in following examples, it is much more reliable
because it is not dependent on the choice of data.

Example 2. 10 crisp input and fuzzy output are generated to set a fuzzy
regression model as follows:

Yi=A A @z;®E;
=(1.2,21)r® (2.7,13)r @2, ® B, i=1,...,10.

The mode and spreads of E; are generated from a log normal distribution
LN(0,1) and a Weibull distribution W (1,1.5) respectively, which are heavy
tailed distribution, We added some outliers from these heavy tail distributions.
Table 3 shows the data obtained using lognormal distribution and Weibull
distribution.

Based on proposed fuzzy regression model using Theil’s method, the coef-
ficients were converged after 4 times of iterations, which result in following
models:

(a) VES = Ay AL @ ; = (1.717,3.997) 7 & (3.068,1.239)r ® ;.
(b) VIt = Al @ Al @ 2, = (1.727,1.695)r @ (2.876,1.863)1 ® ;.
(c) VI? = A2 @ A2 @ z; = (1.634,2.344)p @ (2.876,1.863)1 @ ;.

Fig. 2 shows the data in Example 2 and the results Y7* and Y72 of Theil’s
method when the constant terms are estimated by median and mean.
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TABLE 3. Data for Example 2.

Ty Y, = (yia lywryi)T

L Yi lyi Ty,

1 4.7 3.41 3.41

2 7.12 7.04 7.04

3 110.97 | 6.03 | 6.03

4 | 13.23 | 10.36 | 10.36

5 115.39 | 13.96 | 13.96

6 [20.03]11.44 | 11.44

7 126.79 | 12.17 | 12.17

8 | 31.68 | 12.64 | 12.64

9 | 27.25 | 15.62 | 15.62

10 | 28.75 | 15.46 | 15.46
&0 I | T
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FicuRrE 2. Fitted line for Example 2.

Here we obtained the errors PMFD between true coefficients and estimated
coefficients as follows:

TABLE 4. PMFD for Example 2

k| d(Ag, Ay) | d(Ag, AL) | d(Ay, A2)
0.978 0.943 0.462
1 1.205 1.01 1.01

Example 3. In this example we consider the following model
Yi=A A ®X;DE;
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=(523)r®2,1.N)r9X;®E;, i=1,...,10.

For the observations X; = (z;,S,,), we generate the mode z; from uniform
distribution and the spread s,, from triangular distribution, respectively. For
error term E; = (m;, ¢;), the modes my, are generated from Weibull distribu-
tion and the spreads e; are generated from t¢-distribution with degree of freedom
1(i=1,...,10).

Weibull distributions and t-distribution are heavy tailed distribution, so that
E; includes outliers. Table 5 is the data for the fuzzy regression model obtained
by using a Weibull distribution and ¢-distribution.

TABLE 5. Data for Example 3.

X; = (@i, 82,)7 | Yi = (i, 8y;)

T Sz Y Sy

2 1.6 11 6.97
8 2.1 22.04 | 10.78
6 4.0 17.95 | 11.31
3 2.4 11.25 | 8.23

3.4 27.47 | 15.68
4.3 19.38 | 13.83
3.5 22.04 | 16.89
2.0 23.37 | 12.07
3.7 15.51 | 9.97
2.8 3147 | 8.1

O 00~ O Uk W N .
[a—
=

Ut © 00

—
o
—
w

The estimated coefficients A, and AL and A2 (k = 0,1) using LSE and
proposed fuzzy Theil’s method are followings:

(a) VES = Ay @ A1 @ X; = (6.231,3.126)p @ (1.933,0.259) 1 @ X;.
(b) VIt = Al o Al @ X; = (5.539,1.533)r @ (1.994, 0.346)7 ® X;.
(c) V2 = A2 A2 © X; = (5.680,2.399) @ (1.994, 0.346)7 ® X;.

Fig. 3 shows the data obtained from Weibull distribution and ¢-distribution
and the result Y7 of Theil’s method when the constant term is estimated by
median.

To compare the efficiencies of LSE and proposed fuzzy Theil’s method, we
use the performance measure (12). Table 5 shows proposed method is robust,
that is not sensitive to outliers even if the dataset includes fuzzy outliers.

4. Conclusions

In this paper, we propose fuzzy Theil’s method to obtain a robust fuzzy re-
gression model and a new performance measure, PMFD (Performance measure
based on fuzzy distance) to compare the efficiencies which consider distance
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FIGURE 3. Fitting lines for Example 3

TABLE 6. Errors of estimated fuzzy regression coefficients

k| d(Ay, Ag) | d(Ay, AL) | d(Ag, A3)
0 0648 0.321 0.528
1| 0825 0.575 1.575

when there is no overlapped area between two fuzzy numbers. In order to find
the fuzzy regression model, we take the median of estimated value from ar-
bitrary pairs of observations in terms of a-level sets, based on the procedures
provided in the paper. An example using a data which has been frequently used
in many studies is given to compare the fuzzy regression model derived from
the suggested method and the least squares method. Two simulation stud-
ies shows that proposed fuzzy Theil’s method is robust when dataset includes
fuzzy outliers.
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