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Abstract

It is important to identify informative variables in high dimensional data analysis; however, it becomes a
challenging task when covariates are contaminated by measurement error due to the bias induced by measurement
error. In this article, we present a two-step approach for variable selection in the presence of measurement
error. In the first step, we directly select important variables from the contaminated covariates as if there is no
measurement error. We then apply, in the following step, orthogonal regression to obtain the unbiased estimates
of regression coeflicients identified in the previous step. In addition, we propose a modification of the two-
step approach to further enhance the variable selection performance. Various simulation studies demonstrate the
promising performance of the proposed method.
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1. Introduction

With the growth of high dimensional data, variable selection becomes a primal task in statistical learn-
ing. Since the prediction accuracy of final models relies heavily on selected variables. Regularization
has become one of the canonical approaches for variable selection due to its fast and promising perfor-
mance under high-dimensional setups since the proposal of the least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996). In addition to the L; penalty for LASSO, nonconvex penalties
such as the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and the minimax concave
plus penalty (MCP) (Zhang, 2010) have been widely employed as alternatives.

Measurement error in variables is commonly observed in practice. Let the dataset be (y;, X;) €
R xR? fori=1,...,n generated from y; = X, + ¢ where 8 = (Bi,...,0,) and ¢ is the random error
with mean 0 and variance o2, and independent of x;, i = 1,...,n. Without measurement error, the
least squares estimate would be an obvious choice. However, suppose that instead of x;, we observe
the contaminated predictor w; by the measurement error u;. That is,

w,=x;+w, i=1,...,n, (L.1)

where u; denotes the measurement error with mean zero and covariance X, and independent of both
x; and ¢. Assuming E(x) = 0, Cov(x) = 0',2‘1‘,,, and Cov(u) = o-lle,, where o and o, are scalars, we
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compute the population regression coefficient of y on w denoted by 8" in order to illustrate the effect
of the measurement error:

o2

—Xﬂ’

B = {Cov(w)}"'Cov(w, ¥) = {Cov(x + uw)} ' Cov(x + u,¥) = ———
Oyt 0%

where B = {Cov(x)}~'Cov(x, y) denotes the true target of interest. This shows that 8* does not consider
a measurement error biased toward zero and this bias is called attenuation (Fuller, 1987). Therefore
the implication of ignoring a measurement error could be considerable in inferential procedure.

Numerous methods have been developed for measurement error models (Carroll et al., 2006, and
references); however, is limited research on variable selection considering the measurement error
effect. Liang and Li (2009) proposed SCAD-penalized orthogonal regression for a partially linear
model and Ma and Li (2010) elegantly developed the penalized version of an estimating equation
that can be applied to more broad families of semi-parametric models. Both ideas attempt to achieve
variable selection and estimation simultaneously.

In this paper, we propose a two-step procedure for variable selection in linear regression with
measurement errors. The proposed process conducts selection and estimation separately. We firstly
identify important variables without considering measurement error by applying conventional regu-
larized methods directly to (y;, w;). We then obtain unbiased coefficient estimates only for the selected
variables via orthogonal regression. Our idea shares a conceptual similarity with the least angle re-
gression - ordinary least squares (LARS-OLS) hybrid (Efron et al., 2004) and the relaxed LASSO
(Meinshausen, 2007) that separate variable selection and estimation steps in linear regression without
measurement error. In addition, we propose a simple modification in the first step to enhance the
variable selection performance by reducing false positives via random partitioning.

2. Orthogonal regression

Orthogonal regression has been regarded as one of the popular choices for bias correction. The or-
thogonal regression assumes that X = (xj,...,X,)" is an unknown fixed constant to be estimated.
Consequently, the orthogonal regression minimizes the following objective function with respect to
the unknown parameter 8 and the unobservable covariate X.

LB.X) = (= XB(y - XB) +y D (Wi —x) ;! (Wi = xy), @1
i=1
where y = (y1,...,y,)", ¥ = o which is unknown. Here we used a new notation y to denote o> to

emphasize that it will be treated as a tuning parameter instead of a model parameter. In this regards,
we develop a data-adaptive method to choose a proper value of y, which will be discussed in Section 4.
The measurement error variance X, is often assumed to be known in practice since it can be estimated
by repeatedly measuring the predictors (or is sometimes available from external sources). Wheny = 1,
the objective function becomes the orthogonal distance between (y;, w;) and (x;ﬂ, X;), which explains
its name. Here we let 8 be the orthogonal regression estimator where (8, X) = argming x L(B, X).

To illustrate this, we consider a set of data (y;, w;), i = 1,...,n from the following linear regression
model with the measurement error.

N
yi_Xiﬂ+€i7
Wi =X; +u;,
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Figure 1: Boxplots for coefficient estimates of (a) uninformative variable (8,) and (b) informative variable (3,).
where B = (0,1), x; © N>(0,T), & ¥ N(0,1), and u; *® N»(0,I) with n = 100. We use the three
estimation methods: least squares regression on X (denoted by Oracle) and least squares regression
on W (OLS), and the orthogonal regression on W (OR). Figure 1 shows the boxplots of the coef-
ficient estimates obtained by the three methods over 100 independent repetitions. Notice that 3 is
uninformative and there is no attenuation observed even for OLS (subpanel (a)). However, subpanel
(b) for the informative variable 8, depicts that attenuation is clearly observed in OLS. The orthogonal
regression corrects the attenuation and its distribution is similar to the oracle estimates without the
measurement error.

The least squares estimate for (y;, w;) is biased; however, it still contains a significant amount
of information for identifying informative variables S = {j : 8; # 0} since the goal of the variable
selection is not to estimate exact value of §;, j = 1,..., p but to check whether 5; = 0 or not. This
motivates us to develop a two-step approach that separates selection step and estimation step.

3. Two-step procedure

We develop a two-step procedure for variable selection in linear regression with measurement error.
The key idea of the two-step procedure is to separate selection and estimation.
In the first step we consider the following regularized linear regression for (y;, w;)

P
Bay:=(B".....80) = argmin(y ~ WE)"(y - WB) + > paD,
j=1

where W = (wy,...,w,)", p, denotes the sparsity-inducing penalty function such as L; norm penalty
for LASSO and non-convex penalties including SCAD and MCP and A > 0 is a tuning parameter.
The role of A is to control the degree of sparsity of the solution B(l) that can be data-adaptively chosen
via cross-validation.

Notice that ﬁ(l) is obviously biased. However, the goal of the first step is not to estimate £ but to
estimate S. Therefore, we have

S={jIp"#0, j=1,..p}

in the first step.
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Given S, we can estimate Bs=1Bj:Jj¢€ S) by applying the orthogonal regression of y; on the
selected predictors only. Finally we have the final estimate denoted by B s that is defined by

(BS, XS) = argmin (y - Xsﬂs)T (y - XSﬂS) + yz (wi’g - xi’S)T El_lls (Wi,S - Xi’g),
i=1

$S

where W= {wijlj € 3}, X, g = {xijlj € 3}, Xg = (X]’S, e ,xns)T, and X8 is the covariance matrix
of ug = {ujlj € S).

The proposed two-step method shows promising performance; however, we empirically observe
that uninformative variables are often selected in the first step due to the additional variability of w;
compared to x;. We suggest a simple modification for the selection step as follows. In order to reduce
such false positives in the first step. We randomly split data into two subsets with the same size and
apply regularized methods on the two subsets. Then we set S=38,nS8, where S| and S, denote the
selected sets from the two subsets respectively. Simulation studies show that the simple modification
helps reduce false positives in the selection step.

However, we also remark that this random partitioning approach may not work well when the
sample size is low and/or the signal of informative variables are not strong because the signal is too
weak to detect from half of the data. Therefore we recommend in practice to employ this modification
only when the sample size is large enough.

4. Tuning y: SIMEX estimator of o~

In the orthogonal regression (2.1), y which is in fact o is an unknown but crucial quantity, and thus
it should be estimated before applying the proposed method. Without the measurement error, we can
estimate o> by

& = (v = XB) (- XB),

. )
where  denotes the least square estimate of y on X. In the presence of measurement error, we can
consider (), a naive estimate of error variance from the orthogonal regression as:

) = = (= WhO) (v~ Wh). @

n

where ﬁ(y) denotes the orthogonal regression estimate and it is a function of y. However, 6-%(y) in
(4.1) clearly over-estimates o2 since W are contaminated. Let

Aly) = 5 (y) - 6 4.2)

be the difference between the two estimates. We propose to exploit the simulation-extrapolation
(SIMEX) (Cook and Stefanski, 1994) to estimate A(y) in (4.2). For the SIMEX method, we con-
sider independent copies of w;, uf ~ i N(@O,%y), i = 1,...,n and define W* = (w],... ,wWi)T with
w; = x; + ul. SIMEX is motivated because the relation between X and W is similar to that between
W and W*.

In particular, we denote WZ = (wib, e, w;’;’b)T with be w;"h =X; +u;, whereu;, fori=1,...,n
is the independently simulated measurement error of the b iteration for b = 1,..., B. Given vy, we
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obtain the solution BZ()/) as the orthogonal regression estimator of (y, W})
e < : T - * T -1 *
(By().X) = argmin(y - XB)T(y - XB) + ¥ Z (Wi, —xi) 22} (W), - xi)
BX i=1
since COV(WZ , — Xi) = 2Xy. We then compute

(y-WB®) (y-WB®). b=1...B

s 1
0';,2()/) = m

and finally, the SIMEX estimator of Agpvex(y) is given by
1 &
Asivex() = 3 D570 = 7). (4.3)
b=1

and the estimated variance &gIMEX(y) is

Famnex(Y) = 7)) — Asivex (Y)-

Finally, we can find ¥ such that § = argmin, |&§IMEX()/) — | via grid search.

5. Simulation

We conduct a simulation to investigate the performance of the two-step variable selection procedure
and o estimation. We consider a SCAD penalty function and perform ten-fold cross validation for A
selection in the first step of the variable selection. We remark that we have two versions, the original
and the modified version, of the two-step procedure method, denoted by TS1 and TS2, respectively.
Competing methods considered in the simulation include the least squares regression of y on X as
an oracle estimator (denoted by Oracle), the least squares regression of y on W (denoted by OLS),
the orthogonal regression of y on W (denoted by OR) and the penalized least squares regression of
y on W (denoted by PLS). We also consider the penalized orthogonal regression (denoted by POR)
by directly adding a penalty term on (2.1), which can be viewed as a one-step procedure. For all
orthogonal regressions considered here, we assume y = o is known for simplicity.
Setting (n, p) € {200, 500} x {20}, we consider the following three regression models:

M1) yi = xit6 + xi17 + Xing + X9 + Xi20 + €

M2) y; = xip + Xi7 + Xin2 + X3 + Xipo + €

M3) y; = =3.6x;3 — 1.5xi6 + xi11 + 2.3x514 + 4x20 + €

where x; Y »(0,1,) and ¢ By (0,1). M1) and (M2) are regarded as the models with relatively week

signals while (M3) is the complex model with strong signals. When generating the measurement error
u; by N, (0, Xy), we consider the two different structures of Xy as:

e Independent (IND): X, = oI,

e Autoregressive (AR): X, = o'lz,Ap where A, denotes a p-dimensional symmetric matrix whose
(i, )" element is =, i, j=1,..., p.
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Table 1: Simulation result for independent predictors

oy =05 oy =1
TP FP MSE TP FP MSE
Oracle 5.00 (0.00) 0.00 (0.00) 0.010 (0.013) 5.00 (0.00) 0.00 (0.00) 0.010 (0.013)
OLS 5.00 (0.00) 15.00 (0.00) 0.254 (0.052) 5.00 (0.00) 15.00 (0.00) 1.301 (0.122)
OR 5.00 (0.00) 15.00 (0.00) 0.115 (0.038) 5.00 (0.00) 15.00 (0.00) 0.507 (0.235)
PLS 5.00 (0.000 0.74 (1.32) 0.206 (0.051) 5.00 (0.00)0 1.21 (1.72) 1.254 (0.120)

Model Method

ME pOR 500 (000) 112 (255 0046 (0.043) 500 (0.00) 184 (1.74) 0236 (0.178)
TSI 500 (0.00) 0.74 (1.50) 0.037 (0.035) 500 (0.00) 121 (2.08) 0.182 (0.159)
TS2 500 (0.00) 054 (1.04) 0035 (0.027) 500 (0.00) 093 (1.23) 0.142 (0.130)
Oracle 5.00 (0.00) 0.00 (0.00) 0.010 (0.013) _ 5.00 (0.00) 000 (0.00) 0.010 (0.013)
OLS 500 (0.00) 1500 (0.00) 0270 (0.053)  5.00 (0.00) 1500 (0.00) 1.351 (0.128)
OR 500 (0.00) 1500 (0.00) 0.124 (0.039)  5.00 (0.00) 1500 (0.00) 0.560 (0.201)
Mo PLS 500 (0.00) 078 (188) 0224 (0.051) 500 (0.00) 152 (200) 1296 (0.126)
POR 500 (0.00) 158 (2.64) 0055 (0.048) 500 (0.00) 2.04 (2.38) 0281 (0.203)
TSI 500 (0.00) 0.78 (175 0037 (0.034) 500 (0.00) 152 (248) 0.192 (0.165)
TS2 500 (0.00) 0.68 (1.36) 0.034 (0.031) 500 (0.00) 1.08 (2.00) 0.136 (0.147)
Oracle  5.00 (0.00) 0.00 (0.00) 0.010 (0.013)  5.00 (0.00) 000 (0.00) 0010 (0.013)
OLS 5.00 (0.00) 1500 (0.00) 1.817 (0.301)  5.00 (0.00) 1500 (0.00) 9.922 (0.909)
OR 500 (0.00) 1500 (0.00) 0.534 (0.165)  5.00 (0.00) 1500 (0.00) 2.695 (1.189)
M3 PLS 500 (000) 145 (1.62) 1641 (0314) 495 (020) 294 (255) 9871 (0.951)

POR 500 (0.00) 1.86 (1.81) 0267 (0.173) 494 (020) 341 (2.68) 1.604 (1.086)
TSI 500 (0.00) 145 (1.66) 0236 (0.159) 495 (0.20) 294 (2.56) 1.361 (0.900)
TS2 500 (0.00) 1.00 (L.44) 0.194 (0.135)  4.85 (0.34) 233 (2.30) L1179 (0.988)

Averaged TP, FP, and MSE over 100 independent repetitions are reported under (M1)—(M3) where %, takes IND structure
with n = 500 and p = 20. The SCAD penalty is used for a shrinkage method. The standard errors of TP, FP, and MSE are
given in parenthesis. TP = true positives; FP = false positive; MSE = median of squared error.

For o, we consider {0.5, 1} for IND and 0.1, 0.25} for AR respectively.
For performance evaluation, we report the three values with their standard errors:

o TP: averaged true positives: the # of important variables selected in the first step.
o FP: averaged false positive: the # of unimportant variables selected in the first step.
e MSE: the median of squared error ||8 — [3||2.

The first two measures, TP and FP quantify the performance of the variable selection. MSE measures
the accuracy of coefficient estimates. In our simulation study, perfect methods have 5 TP, 0 FP and
the lowest MSE.

Table 1 and Table 2 report the simulation results when the measurement errors have independent
and autoregressive structures, respectively. It is observed that our two-step approach outperforms
the POR which is a one-step approach. Comparing the two versions of the two-step approach, the
modified version substantially reduces false positives. We also note that our two-step approach using
LASSO and MCP performs better than the one-step approach under the all scenarios in considered.

We next conduct additional simulations to examine the performance of our method to estimate
v = o2, the variance of error. We investigate the case where the data is generated from (M1) having
the independent form X, with oy X n X p = {0.5, 1} x 1000 x 20. While o, is fixed, we vary the true
values of y = o between 0.5 to 1.5 to show the performance of the proposed method with B = 100.

Table 3 describes the average estimated y and its standard error over 100 repetitions. As the true
v is increased, the proposed method performs well on average even though the noise strength o, is
strong. High averages with low standard error shows the consistency of the estimator and the accuracy
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Table 2: Simulation result for autoregressive predictors

oy =05 Oy =
TP FP MSE TP FP MSE
Oracle 5.00 (0.00) 0.00 (0.00) 0.011 (0.013) 5.00 (0.00) 0.00 (0.00) 0.011 (0.013)
OLS 5.00 (0.00) 15.00 (0.00) 0.048 (0.014) 5.00 (0.00) 15.00 (0.00) 0.134 (0.034)
OR 5.00 (0.00) 15.00 (0.00) 0.047 (0.014) 5.00 (0.00) 15.00 (0.00) 0.078 (0.023)
PLS 5.00 (0.00)0 0.85 (1.42) 0.013 (0.010) 5.00 (0.00) 0.86 (2.11) 0.085 (0.035)

Model Method

ME© pOR 500 (000) 050 (212) 0012 (0013) 500 (0.00) 121 (216) 0025 (0.023)
TSI 500 (0.00) 085 (1.50) 0015 (0.015) 500 (0.00) 086 (1.72) 0025 (0.024)
TS2 500 (0.00) 0.65 (144) 0014 (0.011) 500 (0.00) 0.65 (2.04) 0023 (0.021)
Oracle 5.00 (0.00) 0.00 (0.00) 0.010 (0.013) _ 5.00 (0.00) 000 (0.00) 0.010 (0.013)
OLS 500 (0.00) 1500 (0.00) 0.045 (0.014) 500 (0.00) 1500 (0.00) 0.086 (0.026)
OR 500 (0.00) 1500 (0.00) 0.046 (0.014)  5.00 (0.00) 1500 (0.00) 0.065 (0.020)
Mo PLS 500 (000) 108 (L57) 0014 (0.010) 500 (0.00) 173 (292) 0.045 (0.026)
POR 500 (0.00) 047 (1.61) 0012 (0.009) 500 (0.00) 1.17 (2.68) 0018 (0.018)
TSI 500 (0.00) 1.08 (1.66) 0017 (0.016) 500 (0.00) 173 (278) 0.023 (0.020)
TS2 500 (0.00) 0.74 (146) 0015 (0.013) 500 (0.00) 144 (2.11) 0022 (0.019)
Oracle  5.00 (0.00) 0.00 (0.00) 0.010 (0.013)  5.00 (0.00) 000 (0.00) 0010 (0.013)
OLS 5.00 (0.00) 1500 (0.00) 0.064 (0.019) 500 (0.00) 1500 (0.00) 0.343 (0.074)
OR 500 (0.00) 1500 (0.00) 0.059 (0.017)  5.00 (0.00) 1500 (0.00) 0.158 (0.044)
M3 PLS 500 (000) 100 (174) 0022 (0015) 500 (0.00) 427 (401) 0223 (0.089)

POR 500 (0.00) 122 (213) 0016 (0.015 500 (0.00) 3.46 (3.52) 0.094 (0.055)
TSI 500 (0.00) 1.00 (1.71) 0021 (0.020)  5.00 (0.00) 427 (4.24) 0.083 (0.050)
TS2 500 (0.00) 077 (1.62) 0019 (0.016)  5.00 (0.00) 343 (3.64) 0.078 (0.047)

Averaged TP, FP, and MSE over 100 independent repetitions are reported under (M1)-(M3) where %, takes AR structure
with n = 500, p = 20, and p = 0.5. The SCAD penalty is used for a shrinkage method. The standard errors of TP, FP, and
MSE are given in parenthesis. TP = true positives; FP = false positive; MSE = median of squared error.

Table 3: Simulation result for y estimation

oy =05 oy =1
Y AVER SE AVER SE
0.50 0512 (0.090) 0.638 (0.18D)
0.70 0.717 (0.093) 0.834 (0.222)
1.00 1.016 (0.110) 1.118 (0.255)
1.30 1.303 (0.119) 1.409 (0.269)
1.50 1.526 (0.129) 1.600 (0.266)

The averaged estimated y and its standard error over 100 repetitions are reported under (M1) with IND structure, n = 1000
and p = 20.

of our algorithm. Thus, the proposed estimation method based on the SIMEX idea shows promising
performance to select a proper y.

6. Real data illustration

For the real data illustration, we use the Boston housing data (Harrison and Rubinfeld, 1978) available
in R. The response is the logarithm of the median value of owner-occupied homes in the Boston areas.
The data originally contains thirteen predictors which are not contaminated. In order to check the
performance of the proposed method under the presence of measurement error, we first exclude two
discrete predictors and marginally standardize the eleven continuous predictors. We then generate
(p — 11) noise variables from the standard normal distribution so that we have p predictors in total
where p € {20,30}. Finally, the measurement errors from the normal distribution with mean 0 and
variance 0.5 which we assume to be known are generated and added to all predictors. We apply the
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Table 4: Real-data-based comparison results

p Penalty PLS TS p-value
LASSO 0.742 (0.065) 0.637 (0.124) 0.000
20 SCAD 0.698 (0.081) 0.658 (0.176) 0.013
MCP 0.696 (0.081) 0.686 (0.220) 0.333
LASSO 0.644 (0.049) 0.557 (0.076) 0.000
30 SCAD 0.607 (0.078) 0.584 (0.104) 0.000
MCP 0.606 (0.077) 0.591 (0.105) 0.004

Averaged root mean square error over 100 independent repetitions along with the corresponding standard deviations. The
last column contains the p-values for the (one-sided) pairwise #-test between the RMSEs of PLS and TS.

proposed two-step procedure (TS) to this artificially contaminated data and compare its performance
to the penalized least regression of the response on the contaminated predictors. We repeat these
steps 100 times independently; consequently, Table 4 reports the averaged root mean squared error
(RMSE) of regression coefficients over the 100 independent repetitions. The last column reports the
p-values for the pairwise mean difference between the RMSEs of TS and PLS. When computing
the RMSE we treat the OLS estimators based on the eleven predictors before the contamination as
true parameter values for informative predictors and O for all noise variables. It is observed that the
proposed TS outperforms PLS that ignores measurement error which is concordant to what we have
seen in Section 4.

7. Conclusion

In this paper, we develop a two-step variable selection method for measurement error models. The
proposed method is based on the idea of separating selection and estimation; it first selects significant
variables from contaminated covariates and then obtains the orthogonal regression estimates of the se-
lected variables. Furthermore, we suggested a SIMEX-based method to estimate y which is unknown
in practice. Our simulation results illustrate that the proposed method works well under various sce-
narios with different types of variance-covariance matrices. A tactic assumption in both the variable
section methods and the SIMEX method is that X, is known. The estimation of the error covariance
matrix is still challenging in error-in-variable models; in addition, most research assumes that X, is
diagonal such as X, = o-ﬁI,, Amemiya and Fuller (1984) and o, can be estimated from repeated mea-
surements. Despite the drawback, the proposed methods are valuable for improving estimation in the
measurement errors model; consequently, the estimation of X, remains a topic for future work.
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