• 제목/요약/키워드: tubulin

검색결과 371건 처리시간 0.026초

Proteomic Analysis on Exosomes Derived from Patients, Sera Infected with Echinococcus granulosus

  • Wang, Wen;Zhou, Xiaojing;Cui, Fang;Shi, Chunli;Wang, Yulan;Men, Yanfei;Zhao, Wei;Zhao, Jiaqing
    • Parasites, Hosts and Diseases
    • /
    • 제57권5호
    • /
    • pp.489-497
    • /
    • 2019
  • Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.

Novel Fungal Species Belonging to the Genus Acaulium Isolated from Riptortus clavatus (Heteroptera: Alydidae) in Korea

  • Lee, Ju-Heon;Ten, Leonid N.;Lee, Seung-Yeol;Jung, Hee-Young
    • 한국균학회지
    • /
    • 제49권4호
    • /
    • pp.477-486
    • /
    • 2021
  • A survey of insect-associated fungi in Korea revealed a novel fungal strain isolated from the bean bug Riptortus clavatus (Heteroptera: Alydidae). Culturally and morphologically, the fungal strain designated KNUF-20-INY03, shares features with members of the genus Acaulium. Phylogenetic analyses based on the concatenated nucleotide sequences of the internal transcribed spacer regions (ITS) regions and partial sequences of the translation elongation factor 1-alpha (TEF1-α), and β-tubulin (β-TUB), and large subunit of the nuclear ribosomal RNA (LSU) genes showed that the isolate is part of a clade that includes other Acaulium species, but it occupies a distinct phylogenetic position. Based on the shape, size, and color of its conidia and conidiogenous cells, strain KNUF-20-INY03 is readily distinguishable from the closely related A. acremonium, A. albonigrescens, A. caviariformis, A. pannemaniae, and A. retardatum. The conidial length-to-width ratio (1.6) of the novel isolate is significantly lower than that of A. acremonium (1.9), A. albonigrescens (2.4), and A. pannemaniae (2.4), and KNUF-20-INY03 produces hyaline conidia and elliptical conidiogenous cells while A. caviariformis forms brown conidia and A. retardatum produces flask-shaped conidiogenous cells. Thus, both phylogenetic and morphological analyses indicate that this strain is a novel species in the genus Acaulium, and we propose the name Acaulium microspora sp. nov.

Mycoplasma exploits mammalian tunneling nanotubes for cell-to-cell dissemination

  • Kim, Bong-Woo;Lee, Jae-Seon;Ko, Young-Gyu
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.490-495
    • /
    • 2019
  • Using tunneling nanotubes (TNTs), various pathological molecules and viruses disseminate to adjacent cells intercellularly. Here, we show that the intracellular invasion of Mycoplasma hyorhinis induces the formation of actin- and tubulin-based TNTs in various mammalian cell lines. M. hyorhinis was found in TNTs generated by M. hyorhinis infection in NIH3T3 cells. Because mycoplasma-free recipient cells received mycoplasmas from M. hyorhinis-infected donor cells in a mixed co-culture system and not a spatially separated co-culture system, direct cell-to-cell contact via TNTs was necessary for the intracellular dissemination of M. hyorhinis. The activity of Rac1, which is a small GTP binding protein, was increased by the intracellular invasion of M. hyorhinis, and its pharmacological and genetic inhibition prevented M. hyorhinis infection-induced TNT generation in NIH3T3 cells. The pharmacological and genetic inhibition of Rac1 also reduced the cell-to-cell dissemination of M. hyorhinis. Based on these data, we conclude that intracellular invasion of M. hyorhinis induces the formation of TNTs, which are used for the cell-to-cell dissemination of M. hyorhinis.

Aspergillus caninus (Syn: Phialosimplex caninus): a New Isolate from Field Soils in Korea

  • Adhikari, Mahesh;Gurung, Sun Kumar;Kim, Sang Woo;Lee, Hyun Goo;Ju, Han Jun;Gwon, Byeong Heon;Kosol, San;Bazie, Setu;Lee, Hyang Burm;Lee, Youn Su
    • 한국균학회지
    • /
    • 제46권4호
    • /
    • pp.383-392
    • /
    • 2018
  • During the study of indigenous fungal communities in soil samples collected from various field soils in Sancheong, Gyeongsangnam-do, Korea in 2017, several species of Aspergillus were discovered. Aspergillus caninus (KNU17-7) was isolated, identified, and described based on the results from macro and micro morphological characteristics and molecular characterization. Morphologically, it was identified using five different growth media: potato dextrose agar, oatmeal agar, yeast extract sucrose agar, czapek yeast extract agar, and malt extract agar. For the molecular identification, sequencing of internal transcribed spacer, ${\beta}-tubulin$, and calmodulin genes was performed. Based on this characterization, our study isolate was identified as Aspergillus caninus. This fungal species has not been officially reported in Korea before, and we report here with its morphological and molecular phylogenetic characterization.

Genetic Diversity of the Pear Scab Fungus Venturia nashicola in Korea

  • Choi, Eu Ddeum;Kim, Gyoung Hee;Park, Sook-Young;Song, Jang Hoon;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.76-86
    • /
    • 2019
  • Scab disease caused by Venturia nashicola is of agroeconomic importance in cultivation of Asian pear. However, little is known about the degree of genetic diversity in the populations of this pathogen. In this study, we collected 55 isolates from pear scab lesions in 13 major cultivation areas in Korea and examined the diversity using sequences of internal transcribed spacer (ITS) region, ${\beta}$-tubulin (TUB2), and translation elongation factor-$1{\alpha}$ ($TEF-1{\alpha}$) genes as molecular markers. Despite a low level of overall sequence variation, we found three distinctive subgroups from phylogenetic analysis of combined ITS, TUB2, and $TEF-1{\alpha}$ sequences. Among the three subgroups, subgroup 1 (60% of isolates collected) was predominant compared to subgroup 2 (23.6%) or subgroup 3 (16.4%) and was distributed throughout Korea. To understand the genetic diversity among the subgroups, RAPD analysis was performed. The isolates yielded highly diverse amplicon patterns and none of the defined subgroups within the dendrogram were supported by bootstrap values greater than 30%. Moreover, there is no significant correlation between the geographical distribution and the subgroups defined by molecular phylogeny. Our data suggest a low level of genetic diversification among the populations of V. nashicola in Korea.

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn;Park, Myung Soo;Lee, Hanbyul;Kim, Jae-Jin;Eimes, John A.;Lim, Young Woon
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.50-58
    • /
    • 2019
  • Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Ascospore Infection and Colletotrichum Species Causing Glomerella Leaf Spot of Apple in Uruguay

  • Alaniz, Sandra;Cuozzo, Vanessa;Martinez, Valentina;Stadnik, Marciel J.;Mondino, Pedro
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.100-111
    • /
    • 2019
  • Glomerella leaf spot (GLS) caused by Colletotrichum spp. is a destructive disease of apple restricted to a few regions worldwide. The distribution and evolution of GLS symptoms were observed for two years in Uruguay. The recurrent ascopore production on leaves and the widespread randomized distribution of symptoms throughout trees and orchard, suggest that ascospores play an important role in the disease dispersion. The ability of ascospores to produce typical GLS symptom was demonstrated by artificial inoculation. Colletotrichum strains causing GLS did not result in rot development, despite remaining alive in fruit lesions. Based on phylogenetic analysis of actin, ${\beta}$-tubulin and glyceraldehyde-3-phosphate dehydrogenase gene regions of 46 isolates, 25 from fruits and 21 from leaves, C. karstii was identified for the first time causing GLS in Uruguay and C. fructicola was found to be the most frequent (89%) and aggressive species. The higher aggressiveness of C. fructicola and its ability on to produce abundant fertile perithecia could help to explain the predominance of this species in the field.

Unreported Post-harvest Disease of Apples Caused by Plenodomus collinsoniae in Korea

  • Das, Kallol;Kim, Yeong-Hwan;Yoo, Jingi;Ten, Leonid N.;Kang, Sang-Jae;Kang, In-Kyu;Lee, Seung-Yeol;Jung, Hee-Young
    • 한국균학회지
    • /
    • 제48권4호
    • /
    • pp.511-518
    • /
    • 2020
  • This study was conducted to isolate and identify the fungal pathogen caused unreported post-harvest disease on apples (cv. Fuji) fruit in Korea. The disease symptoms on apples appeared as irregular, light to dark brown, slightly sunken spots. The three fungal strains were isolated from infected tissues of apple fruits and their cultural and morphological characteristics were completely consistent with those of Plenodomus collinsoniae. The phylogenetic analysis using the internal transcribed spacer (ITS) regions, beta-tubulin (TUB), and the second largest subunit of RNA polymerase II (RPB2) sequences revealed the closest relationship of the isolates with Plenodomus collinsoniae at the species level. The pathogenicity test showed the same dark brown spots on Fuji apple cultivar. Therefore, P. collinsoniae is a newly reported fungal agent causing post-harvest disease on apples in Korea.

Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea

  • Park, Myung Soo;Lee, Jun Won;Kim, Sung Hyun;Park, Ji-Hyun;You, Young-Hyun;Lim, Young Woon
    • Mycobiology
    • /
    • 제48권6호
    • /
    • pp.431-442
    • /
    • 2020
  • Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.

Isolation and Characterization of Eleven Unrecorded Pezizomycotina Species from Freshwater Ecosystems in Korea

  • Goh, Jaeduk;Jeon, Yu-Jeong;Mun, Hye Yeon;Chung, Namil;Park, Young-Hwan;Park, Sangkyu;Hwang, Hyejin;Cheon, Wonsu
    • 한국균학회지
    • /
    • 제48권4호
    • /
    • pp.423-443
    • /
    • 2020
  • Freshwater fungi are a poly-phylogenetic group of taxonomically diverse organisms. In this study, we isolated diverse fungal strains from various environmental samples obtained from freshwaters in Korea. These strains were identified by performing molecular phylogenetic analyses of rDNA and/or other sequences (beta-tubulin, RNA polymerase II, and translation elongation factor 1). In addition, we examined their morphological characteristics microscopically and cultural characteristics using different media. We identified eleven unrecorded Pezizomycotina species: Cladosporium angulosum, Pseudorobillarda phragmitis, Paraconiothyrium estuarinum, Pseudopithomyces palmicola, Pyrenochaetopsis paucisetosa, Thelebolus globosus, Plagiostoma mejianum, Trichoderma cremeum, Fusarium tanahbumbuense, Coniochaeta endophytica, and Chaetomium tenue. Environmental samples obtained from different freshwater ecosystems in Korea could thus be a good source for isolating and investigating novel fungal species.