DOI QR코드

DOI QR Code

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Myung Soo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Lee, Hanbyul (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University) ;
  • Kim, Jae-Jin (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University) ;
  • Eimes, John A. (University College, Sungkyunkwan University) ;
  • Lim, Young Woon (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2018.10.23
  • Accepted : 2019.01.18
  • Published : 2019.03.01

Abstract

Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Keywords

References

  1. Kang JW. The geographical distribution of marine algae in Korea. Bull Pusan Fish Coll. 1966;7:1-25.
  2. Usov AI, Smirnova GP, Klochkova NG. Polysaccharides of algae: polysaccharide composition of several brown algae from Kamchataka. Russ J Bioorganic Chem. 2001;27:395-399. https://doi.org/10.1023/A:1012992820204
  3. Kim EJ, Fathoni A, Jeong G-T, et al. Microbacterium oxydans: a novel alginate- and laminarin - degrading bacterium for the reutilization of brown seaweed waste. J Environ Manage. 2013;130:153-159. https://doi.org/10.1016/j.jenvman.2013.08.064
  4. Jeon YE, Yin X, Lim SS. Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts. J Food Science Nutr. 2012;41: 443-449.
  5. Park SJ, Min KJ, Park TG. Nutritional characteristics and screening of biological activity of Agarum cribrosum. J Food Science Nutr. 2012;25:842-849.
  6. Cho ML, Lee DJ, Kim JK, et al. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym. 2014;113:507-514. https://doi.org/10.1016/j.carbpol.2014.07.055
  7. Lapointe BE, Bedford BJ. Drift rhodophyte blooms emerge in Lee County: Florida: USA: evidence of escalating coastal eutrophication. Harmful Algae. 2007;6:421-437. https://doi.org/10.1016/j.hal.2006.12.005
  8. Hu C, Li D, Chen C, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res Oceans. 2013;115:C05017.
  9. Hwang EK, Lee SJ, Ha DS, et al. Sargassum golden tides in the Shinan-gun and Jeju Island, Korea. Kor J Fish Aquat Sci. 2016;49:689-693. https://doi.org/10.5657/KFAS.2016.0689
  10. McMillan JD. Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic conversion of biomass for fuels production. Washington: DC: American Chemical Society; 1994. p. 292-324.
  11. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  12. Lee SM, Choi IS, Kim SK, et al. Production of bioethanol from brown algae by enzymic hydrolysis. Kor Sci Biotechnol Bioeng J. 2009;24:483-488.
  13. Jones EBG, Pang KL. Marine fungi and fungal-like organisms. Berlin/Boston: Walter de Gruyter; 2012.
  14. Hong JH, Jang S, Heo YM, et al. Investigation of marine derived fungal diversity and their expliotiable biological activities. Marine Drugs. 2015;13: 4137-4155. https://doi.org/10.3390/md13074137
  15. Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016; 54:646-654. https://doi.org/10.1007/s12275-016-6324-0
  16. Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 2004;21:143-163. https://doi.org/10.1039/b301926h
  17. Schulz B, Draeger S, Rheinheimer J, et al. Screening strategies for obtaining novel: biologically active: fungal secondary metabolites from marine habitats. Botanica Marina. 2008;51:219-234. https://doi.org/10.1515/BOT.2008.029
  18. Godinho VM, Furbino LE, Santiago IF, et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 2013;7: 1434-1451. https://doi.org/10.1038/ismej.2013.77
  19. Kohlmeyer J. Higher fungi as parasites and symbionts of algae. Veroff Inst Meeresforsch Bremerh. 1974;5:339-356.
  20. Visagie CM, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343-371. https://doi.org/10.1016/j.simyco.2014.09.001
  21. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker of fungi. Proc Natl Acad Sci USA. 2012;109:6241-6246. https://doi.org/10.1073/pnas.1117018109
  22. Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae: a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;1:659-666. https://doi.org/10.1080/15572536.2006.11832796
  23. Huang XL, Gao Y, Xue DQ, et al. Streptomycindole: an indole alkaloid from a marine Streptomyces spp. DA22 associated with South China Sea sponge Craniella australiensis. Helv Chim Acta. 2011;94:1838-1842. https://doi.org/10.1002/hlca.201100104
  24. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants: algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant Molecular Biology Manual. Netherlands: Springer; 1994. p. 183-190.
  25. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.
  26. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;1:553-556. https://doi.org/10.1080/00275514.1999.12061051
  27. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323-1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
  28. O' Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90:465-493. https://doi.org/10.1080/00275514.1998.12026933
  29. Park MS, Eom JE, Fong JJ, et al. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol. 2015;53:219-225. https://doi.org/10.1007/s12275-015-4700-9
  30. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772-780. https://doi.org/10.1093/molbev/mst010
  32. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  33. Lee H, Lee YM, Heo YM, et al. Halo-tolerance of marine-derived fungi and their enzymatic properties. BioResources. 2015;10:8450-8460.
  34. Lee YM, Lee H, Kim GH, et al. Miniaturized enzyme production and development of microassays for cellulolytic and xylanolytic enzymes. J Microbiol Methods. 2011;86:124-127. https://doi.org/10.1016/j.mimet.2011.04.013
  35. Mabeau S, Fleurence J. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol. 1993;4:103-107. https://doi.org/10.1016/0924-2244(93)90091-N
  36. Raghukumar S. Methods to study marine fungi: in fungi in coastal and oceanic marine ecosystems. Cham: Springer; 2017.
  37. Flewelling AJ, Ellsworth KT, Sanford J, et al. Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms. 2013;1:175-187. https://doi.org/10.3390/microorganisms1010175
  38. Furbino LE, Godinho VM, Santiago IF, et al. Diversity patterns: ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol. 2014;67:775-787. https://doi.org/10.1007/s00248-014-0374-9
  39. Jones EBG, Suetrong S, Sakayaroj J, et al. Classification of marine Ascomycota: Basidiomycota: Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;73:1-72. https://doi.org/10.1007/s13225-015-0339-4
  40. Zhang T, Wang NF, Zhang YQ, et al. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden. Svalbard (High Arctic) Sci Rep. 2015;5:14524.
  41. Jones EBG, Sakayaroj J, Suetrong S, et al. Classification of marine Ascomycota: anamorphic taxa and Basidiomycota. Fungal Divers. 2009;35: 1-187.
  42. Suetrong S, Schoch CL, Spatafora JW, et al. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 2009;64:155-173. https://doi.org/10.3114/sim.2009.64.09
  43. Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, et al. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution: diversity and biotechnological potential. Botanica Marina. 2010;53:457-468. https://doi.org/10.1515/BOT.2010.045
  44. Park MS, Lee S, Lim YM. A new record of four Penicillium species isolated from Agarum clathratum in Korea. J Microbiol. 2017;55:237-246. https://doi.org/10.1007/s12275-017-6405-8
  45. Zuccaro A, Summerbell RC, Gams W, et al. A new Acremonium species associated with Fucus spp and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol. 2004;50: 283-297.
  46. Zuccaro A, Schoch CL, Spatafora JW, et al. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol. 2008;74:931-941. https://doi.org/10.1128/AEM.01158-07
  47. Hsieh SY, Moss ST, Jones EBG. Ascoma development in the marine ascomycete Corollospora gracilis (Halosphaeriales: Hypocreomycetidae: Sordariomycetes). Botanica Marina. 2007;50: 302-313. https://doi.org/10.1515/BOT.2007.035
  48. Ohzeki T, Mori K. Synthesis of corollosporine, an antibacterial metabolite of the marine fungus Corollospora maritima. Biosci Biotechnol Biochem. 2001;65:172-175. https://doi.org/10.1271/bbb.65.172
  49. Kubicek CP. Involvement of a conidial endoglucanase and a plasma-membrane-bound ${\beta}$-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. Microbiol. 1987;133: 1481-1487. https://doi.org/10.1099/00221287-133-6-1481
  50. Wu B, Zhao Y, Gao PJ. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin (Shanghai). 2006;38:372-378. https://doi.org/10.1111/j.1745-7270.2006.00179.x
  51. Burtseva YV, Sova VV, Pivkin MV, et al. Distribution of O-glycosylhydrolases in marine fungi of the Sea of Japan and the Sea of Okhotsk: characterization of exocellular N-acetyl-${\beta}$-D-glucosaminidase of the marine fungus Penicillium canescens. Appl Biochem Microbiol. 2010;46:648-656. https://doi.org/10.1134/S0003683810060141
  52. Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym. 2007;45:10-14. https://doi.org/10.1016/j.molcatb.2006.10.005
  53. Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase. Langmuir. 2009; 25:1582-1587. https://doi.org/10.1021/la802882s
  54. Holler U, Wright AD, Matthee GF, et al. Fungi from marine sponges: diversity: biological activity and secondary metabolites. Mycol Res. 2000;104:1354-1365. https://doi.org/10.1017/S0953756200003117
  55. Panno L, Bruno M, Voyron S, et al. Diversity: ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanic. N Biotechnol. 2013;30: 685-694. https://doi.org/10.1016/j.nbt.2013.01.010
  56. Arnosti C, Bell C, Moorhead DL, et al. Extracellular enzymes in terrestrial: freshwater: and marine environments: perspectives on system variability and common research needs. Biogeochem. 2014;117:5-21. https://doi.org/10.1007/s10533-013-9906-5

Cited by

  1. The diversity and ecological roles of Penicillium in intertidal zones vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-49966-5
  2. Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers vol.8, pp.1, 2019, https://doi.org/10.3390/microorganisms8010052
  3. Culturable Fungal Community of Pterocladiella capillacea in Keelung, Taiwan: Effects of Surface Sterilization Method and Isolation Medium vol.7, pp.8, 2019, https://doi.org/10.3390/jof7080651
  4. Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation vol.12, pp.1, 2019, https://doi.org/10.1186/s43008-021-00072-0