References
- Kang JW. The geographical distribution of marine algae in Korea. Bull Pusan Fish Coll. 1966;7:1-25.
- Usov AI, Smirnova GP, Klochkova NG. Polysaccharides of algae: polysaccharide composition of several brown algae from Kamchataka. Russ J Bioorganic Chem. 2001;27:395-399. https://doi.org/10.1023/A:1012992820204
- Kim EJ, Fathoni A, Jeong G-T, et al. Microbacterium oxydans: a novel alginate- and laminarin - degrading bacterium for the reutilization of brown seaweed waste. J Environ Manage. 2013;130:153-159. https://doi.org/10.1016/j.jenvman.2013.08.064
- Jeon YE, Yin X, Lim SS. Antioxidant activities and acetylcholinesterase inhibitory activities from seaweed extracts. J Food Science Nutr. 2012;41: 443-449.
- Park SJ, Min KJ, Park TG. Nutritional characteristics and screening of biological activity of Agarum cribrosum. J Food Science Nutr. 2012;25:842-849.
- Cho ML, Lee DJ, Kim JK, et al. Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym. 2014;113:507-514. https://doi.org/10.1016/j.carbpol.2014.07.055
- Lapointe BE, Bedford BJ. Drift rhodophyte blooms emerge in Lee County: Florida: USA: evidence of escalating coastal eutrophication. Harmful Algae. 2007;6:421-437. https://doi.org/10.1016/j.hal.2006.12.005
- Hu C, Li D, Chen C, et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res Oceans. 2013;115:C05017.
- Hwang EK, Lee SJ, Ha DS, et al. Sargassum golden tides in the Shinan-gun and Jeju Island, Korea. Kor J Fish Aquat Sci. 2016;49:689-693. https://doi.org/10.5657/KFAS.2016.0689
- McMillan JD. Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic conversion of biomass for fuels production. Washington: DC: American Chemical Society; 1994. p. 292-324.
- Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
- Lee SM, Choi IS, Kim SK, et al. Production of bioethanol from brown algae by enzymic hydrolysis. Kor Sci Biotechnol Bioeng J. 2009;24:483-488.
- Jones EBG, Pang KL. Marine fungi and fungal-like organisms. Berlin/Boston: Walter de Gruyter; 2012.
- Hong JH, Jang S, Heo YM, et al. Investigation of marine derived fungal diversity and their expliotiable biological activities. Marine Drugs. 2015;13: 4137-4155. https://doi.org/10.3390/md13074137
- Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016; 54:646-654. https://doi.org/10.1007/s12275-016-6324-0
- Bugni TS, Ireland CM. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep. 2004;21:143-163. https://doi.org/10.1039/b301926h
- Schulz B, Draeger S, Rheinheimer J, et al. Screening strategies for obtaining novel: biologically active: fungal secondary metabolites from marine habitats. Botanica Marina. 2008;51:219-234. https://doi.org/10.1515/BOT.2008.029
- Godinho VM, Furbino LE, Santiago IF, et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 2013;7: 1434-1451. https://doi.org/10.1038/ismej.2013.77
- Kohlmeyer J. Higher fungi as parasites and symbionts of algae. Veroff Inst Meeresforsch Bremerh. 1974;5:339-356.
- Visagie CM, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014;78:343-371. https://doi.org/10.1016/j.simyco.2014.09.001
- Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker of fungi. Proc Natl Acad Sci USA. 2012;109:6241-6246. https://doi.org/10.1073/pnas.1117018109
- Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae: a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;1:659-666. https://doi.org/10.1080/15572536.2006.11832796
- Huang XL, Gao Y, Xue DQ, et al. Streptomycindole: an indole alkaloid from a marine Streptomyces spp. DA22 associated with South China Sea sponge Craniella australiensis. Helv Chim Acta. 2011;94:1838-1842. https://doi.org/10.1002/hlca.201100104
- Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants: algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant Molecular Biology Manual. Netherlands: Springer; 1994. p. 183-190.
- White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.
- Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;1:553-556. https://doi.org/10.1080/00275514.1999.12061051
- Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323-1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
- O' Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90:465-493. https://doi.org/10.1080/00275514.1998.12026933
- Park MS, Eom JE, Fong JJ, et al. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol. 2015;53:219-225. https://doi.org/10.1007/s12275-015-4700-9
- Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772-780. https://doi.org/10.1093/molbev/mst010
- Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
- Lee H, Lee YM, Heo YM, et al. Halo-tolerance of marine-derived fungi and their enzymatic properties. BioResources. 2015;10:8450-8460.
- Lee YM, Lee H, Kim GH, et al. Miniaturized enzyme production and development of microassays for cellulolytic and xylanolytic enzymes. J Microbiol Methods. 2011;86:124-127. https://doi.org/10.1016/j.mimet.2011.04.013
- Mabeau S, Fleurence J. Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol. 1993;4:103-107. https://doi.org/10.1016/0924-2244(93)90091-N
- Raghukumar S. Methods to study marine fungi: in fungi in coastal and oceanic marine ecosystems. Cham: Springer; 2017.
- Flewelling AJ, Ellsworth KT, Sanford J, et al. Macroalgal endophytes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms. 2013;1:175-187. https://doi.org/10.3390/microorganisms1010175
- Furbino LE, Godinho VM, Santiago IF, et al. Diversity patterns: ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol. 2014;67:775-787. https://doi.org/10.1007/s00248-014-0374-9
- Jones EBG, Suetrong S, Sakayaroj J, et al. Classification of marine Ascomycota: Basidiomycota: Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015;73:1-72. https://doi.org/10.1007/s13225-015-0339-4
- Zhang T, Wang NF, Zhang YQ, et al. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden. Svalbard (High Arctic) Sci Rep. 2015;5:14524.
- Jones EBG, Sakayaroj J, Suetrong S, et al. Classification of marine Ascomycota: anamorphic taxa and Basidiomycota. Fungal Divers. 2009;35: 1-187.
- Suetrong S, Schoch CL, Spatafora JW, et al. Molecular systematics of the marine Dothideomycetes. Stud Mycol. 2009;64:155-173. https://doi.org/10.3114/sim.2009.64.09
- Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, et al. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution: diversity and biotechnological potential. Botanica Marina. 2010;53:457-468. https://doi.org/10.1515/BOT.2010.045
- Park MS, Lee S, Lim YM. A new record of four Penicillium species isolated from Agarum clathratum in Korea. J Microbiol. 2017;55:237-246. https://doi.org/10.1007/s12275-017-6405-8
- Zuccaro A, Summerbell RC, Gams W, et al. A new Acremonium species associated with Fucus spp and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol. 2004;50: 283-297.
- Zuccaro A, Schoch CL, Spatafora JW, et al. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol. 2008;74:931-941. https://doi.org/10.1128/AEM.01158-07
- Hsieh SY, Moss ST, Jones EBG. Ascoma development in the marine ascomycete Corollospora gracilis (Halosphaeriales: Hypocreomycetidae: Sordariomycetes). Botanica Marina. 2007;50: 302-313. https://doi.org/10.1515/BOT.2007.035
- Ohzeki T, Mori K. Synthesis of corollosporine, an antibacterial metabolite of the marine fungus Corollospora maritima. Biosci Biotechnol Biochem. 2001;65:172-175. https://doi.org/10.1271/bbb.65.172
-
Kubicek CP. Involvement of a conidial endoglucanase and a plasma-membrane-bound
${\beta}$ -glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. Microbiol. 1987;133: 1481-1487. https://doi.org/10.1099/00221287-133-6-1481 - Wu B, Zhao Y, Gao PJ. Estimation of cellobiohydrolase I activity by numerical differentiation of dynamic ultraviolet spectroscopy. Acta Biochim Biophys Sin (Shanghai). 2006;38:372-378. https://doi.org/10.1111/j.1745-7270.2006.00179.x
-
Burtseva YV, Sova VV, Pivkin MV, et al. Distribution of O-glycosylhydrolases in marine fungi of the Sea of Japan and the Sea of Okhotsk: characterization of exocellular N-acetyl-
${\beta}$ -D-glucosaminidase of the marine fungus Penicillium canescens. Appl Biochem Microbiol. 2010;46:648-656. https://doi.org/10.1134/S0003683810060141 - Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym. 2007;45:10-14. https://doi.org/10.1016/j.molcatb.2006.10.005
- Tebeka IR, Silva AG, Petri DF. Hydrolytic activity of free and immobilized cellulase. Langmuir. 2009; 25:1582-1587. https://doi.org/10.1021/la802882s
- Holler U, Wright AD, Matthee GF, et al. Fungi from marine sponges: diversity: biological activity and secondary metabolites. Mycol Res. 2000;104:1354-1365. https://doi.org/10.1017/S0953756200003117
- Panno L, Bruno M, Voyron S, et al. Diversity: ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanic. N Biotechnol. 2013;30: 685-694. https://doi.org/10.1016/j.nbt.2013.01.010
- Arnosti C, Bell C, Moorhead DL, et al. Extracellular enzymes in terrestrial: freshwater: and marine environments: perspectives on system variability and common research needs. Biogeochem. 2014;117:5-21. https://doi.org/10.1007/s10533-013-9906-5
Cited by
- The diversity and ecological roles of Penicillium in intertidal zones vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-49966-5
- Macroalgae Derived Fungi Have High Abilities to Degrade Algal Polymers vol.8, pp.1, 2019, https://doi.org/10.3390/microorganisms8010052
- Culturable Fungal Community of Pterocladiella capillacea in Keelung, Taiwan: Effects of Surface Sterilization Method and Isolation Medium vol.7, pp.8, 2019, https://doi.org/10.3390/jof7080651
- Genomic characterization of three marine fungi, including Emericellopsis atlantica sp. nov. with signatures of a generalist lifestyle and marine biomass degradation vol.12, pp.1, 2019, https://doi.org/10.1186/s43008-021-00072-0