1 |
Stappenbeck TS and Miyoshi H (2009) The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666-1669
DOI
|
2 |
Tkach M and Thery C (2016) Communication by extracellular vesicles: Where we are and where we need to go. Cell 164, 1226-1232
DOI
|
3 |
Schiller PC, D'Ippolito G, Brambilla R, Roos BA and Howard GA (2001) Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J Biol Chem 276, 14133-14138
DOI
|
4 |
Ramirez-Weber FA and Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599-607
DOI
|
5 |
Gerdes HH, Rustom A and Wang X (2013) Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 130, 381-387
DOI
|
6 |
Rainy N, Chetrit D, Rouger V et al (2013) H-Ras transfers from B to T cells via tunneling nanotubes. Cell Death Dis 4, e726
DOI
|
7 |
Rustom A, Saffrich R, Markovic I, Walther P and Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303, 1007-1010
DOI
|
8 |
Hurtig J, Chiu DT and Onfelt B (2010) Intercellular nanotubes: insights from imaging studies and beyond. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2, 260-276
DOI
|
9 |
Abounit S, Bousset L, Loria F et al (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35, 2120-2138
DOI
|
10 |
Gousset K, Schiff E, Langevin C et al (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11, 328-336
DOI
|
11 |
Tardivel M, Begard S, Bousset L et al (2016) Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol Commun 4, 117
DOI
|
12 |
Kumar A, Kim JH, Ranjan P et al (2017) Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci Rep 7, 40360
DOI
|
13 |
Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M and Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9, 310-315
DOI
|
14 |
Panasiuk M, Rychlowski M, Derewonko N and Bienkowska-Szewczyk K (2018) Tunneling nanotubes as a novel route of cell-to-cell spread of herpesviruses. J Virol 92, e00090-18
|
15 |
Rottem S (2003) Interaction of mycoplasmas with host cells. Physiol Rev 83, 417-432
DOI
|
16 |
Okafo G, Prevedel L and Eugenin E (2017) Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Sci Rep 7, 16660
DOI
|
17 |
Onfelt B, Nedvetzki S, Benninger RK et al (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177, 8476-8483
DOI
|
18 |
Drexler HG and Uphoff CC (2002) Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39, 75-90
DOI
|
19 |
Borovsky Z, Tarshis M, Zhang P and Rottem S (1998) Protein kinase C activation and vacuolation in HeLa cells invaded by Mycoplasma penetrans. J Med Microbiol 47, 915-922
DOI
|
20 |
Yavlovich A, Tarshis M and Rottem S (2004) Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol Lett 233, 241-246
DOI
|
21 |
Kimura S, Hase K and Ohno H (2013) The molecular basis of induction and formation of tunneling nanotubes. Cell Tissue Res 352, 67-76
DOI
|
22 |
Arkwright PD, Luchetti F, Tour J et al (2010) Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20, 72-88
DOI
|
23 |
Alto NM, Shao F, Lazar CS et al (2006) Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133-145
DOI
|
24 |
Nikolic DS, Lehmann M, Felts R et al (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118, 4841-4852
DOI
|
25 |
Delage E, Cervantes DC, Penard E et al (2016) Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Sci Rep 6, 39632
DOI
|
26 |
Hanna SJ, McCoy-Simandle K, Miskolci V et al (2017) The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 7, 8547
DOI
|
27 |
Tran Van Nhieu G, Caron E, Hall A and Sansonetti PJ (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18, 3249-3262
DOI
|
28 |
Cardinale F, Chironna M, Chinellato I, Principi N and Esposito S (2013) Clinical relevance of Mycoplasma pneumoniae macrolide resistance in children. J Clin Microbiol 51, 723-724
DOI
|
29 |
Winner F, Rosengarten R and Citti C (2000) In vitro cell invasion of Mycoplasma gallisepticum. Infect Immun 68, 4238-4244
DOI
|