DOI QR코드

DOI QR Code

Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea

  • Park, Myung Soo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Lee, Jun Won (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Kim, Sung Hyun (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Park, Ji-Hyun (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • You, Young-Hyun (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Lim, Young Woon (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2020.08.06
  • Accepted : 2020.09.09
  • Published : 2020.12.31

Abstract

Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.

Keywords

References

  1. Coats VC, Rumpho ME. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol. 2014;5:368
  2. Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil. 2014;376(1-2):1-29. https://doi.org/10.1007/s11104-013-1921-8
  3. Workneh F, Van Bruggen AHC. Microbial density, composition, and diversity in organically and conventionally managed rhizosphere soil in relation to suppression of corky root of tomatoes. Appl Soil Ecol. 1994;1(3):219-230. https://doi.org/10.1016/0929-1393(94)90013-2
  4. Altaf MM, Imran M, Abulreesh HH, et al. Diversity and applications of Penicillium spp. in plant-growth promotion. In: Gupta, V.K., & Rodriguez-Couto, S. (eds.), New and Future Developments in Microbial Biotechnology and Bioengineering: Penicillum System Properties and Applications. Elsevier. Amsterdam, Netherlands; 2017. p. 261-276.
  5. Berg G, Zachow C, Lottmann J, et al. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol. 2005;71(8):4203-4213. https://doi.org/10.1128/AEM.71.8.4203-4213.2005
  6. Elias F, Woyessa D, Muleta D. Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. Int J Microbiol. 2016;2016:5472601
  7. An YN, Zhang X, Zhang TY, et al. Penicimenolides AF, resorcylic acid lactones from Penicillium sp., isolated from the rhizosphere soil of panax notoginseng. Sci Rep. 2016;6:27396. https://doi.org/10.1038/srep27396
  8. Rai R, Kaur B, Singh S, et al. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. Bioresour Technol. 2016;216:958-967. https://doi.org/10.1016/j.biortech.2016.06.040
  9. Visagie CM, Houbraken J, Frisvad JC, et al. Identification and nomenclature of the genus Penicillium. Stud Mycol. 2014a;78:343-371. https://doi.org/10.1016/j.simyco.2014.09.001
  10. Kim HJ, Kim JS, Cheon KH, et al. Species list of Aspergillus, Penicillium and Talaromyces in Korea, based on 'One Fungus One Name' system. Kor J Mycol. 2016;44:207-219. https://doi.org/10.4489/KJM.2016.44.4.207
  11. National List of Species of Korea. 2019. National Institute of Biological Resources, online at http://kbr.go.kr., accessed on 13 July 2020.
  12. Park MS, Fong JJ, Oh SY, et al. Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties. Antonie Van Leeuwenhoek. 2014;106(2):331-345. https://doi.org/10.1007/s10482-014-0205-5
  13. Park MS, Eom JE, Fong JJ, et al. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol. 2015;53(4):219-225. https://doi.org/10.1007/s12275-015-4700-9
  14. Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016; 54(10):646-654. https://doi.org/10.1007/s12275-016-6324-0
  15. Park MS, Lee S, Lim YW. A New record of four Penicillium species isolated from Agarum clathratum in Korea. J Microbiol. 2017;55(4):237-246. https://doi.org/10.1007/s12275-017-6405-8
  16. Park MS, Oh SY, Lee S, et al. Fungal diversity and enzyme activity associated with sailfin sandfish egg masses in Korea. Fungal Ecol. 2018;34:1-9. https://doi.org/10.1016/j.funeco.2018.03.004
  17. Park MS, Oh SY, Fong JJ, et al. The diversity and ecological roles of Penicillium in intertidal zones. Sci Rep. 2019;9(1):1-11.
  18. Park MS, Yu SH. Plant growth promoting fungi isolated from rhizosphere of zoysiagrass in Korea. Kor J Mycol. 2005;33:30-34. https://doi.org/10.4489/KJM.2005.33.1.030
  19. Babu AG, Kim SW, Yadav DR, et al. Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology. 2015;43(1):49-56. https://doi.org/10.5941/MYCO.2015.43.1.49
  20. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: S. Gelvin and R. Schilperoort (eds.), Plant molecular biology manual., Kluwer Academic, Dordrecht; 1994.
  21. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  22. Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae: a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;97(3):659-666. https://doi.org/10.1080/15572536.2006.11832796
  23. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  24. Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014b;78:63-139. https://doi.org/10.1016/j.simyco.2014.07.002
  25. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  26. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  27. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. SC10 workshop on gateway computing environments (GCE10), New Orleans, LA; 2010. p.1-8.
  28. Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. Methuen. London; 1978.
  29. Wang B, Yu Y, Wang L. Penicillium fusisporum and P. zhuangii, two new monoverticillate species with apical-swelling stipes of section Aspergilloides isolated from plant leaves in China. PloS One. 2014;9(7):e101454. https://doi.org/10.1371/journal.pone.0101454
  30. Visagie CM, Renaud JB, Burgess KMN, et al. Fifteen new species of Penicillium. Persoonia. 2016;36:247-280. https://doi.org/10.3767/003158516X691627
  31. Houbraken J, Frisvad JC, Samson RA. Taxonomy of Penicillium section Citrina. Stud Mycol. 2011;70(1):53-138. https://doi.org/10.3114/sim.2011.70.02
  32. Houbraken J, Frisvad JC, Seifert KA, et al. New penicillin-producing Penicillium species and an overview of section Chrysogena. Pers - Int Mycol J. 2012;29(1):78-100. https://doi.org/10.3767/003158512X660571
  33. Houbraken J, Visagie CM, Meijer M, et al. A taxonomic and phylogenetic revision of Penicillium section Aspergilloides. Stud Mycol. 2014;78:373-451. https://doi.org/10.1016/j.simyco.2014.09.002
  34. Visagie CM, Houbraken J, Seifert KA, et al. Four new Penicillium species isolated from the fynbos biome in South Africa, including a multigene phylogeny of section Lanata-Divaricata. Mycol Prog. 2015;14(10):96. https://doi.org/10.1007/s11557-015-1118-z
  35. Pitt JI. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London, UK; 1979.
  36. Bidochka M, Menzies F, Kamp A. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol. 2002;178(6):531-537. https://doi.org/10.1007/s00203-002-0490-7
  37. Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311(1):1-9. https://doi.org/10.1016/j.jembe.2003.12.028
  38. Vijaykrishna D, Jeewon R, Hyde KD. Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers. 2006;23:351-390.
  39. Gao C, Shi NN, Chen L, et al. Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest. New Phytol. 2017;213(4):1874-1885. https://doi.org/10.1111/nph.14287
  40. Quilliam RS, Jones DL. Evidence for host-specificity of culturable fungal root endophytes from the carnivorous plant Pinguicula vulgaris (Common Butterwort). Mycol Progress. 2012;11(2):583-585. https://doi.org/10.1007/s11557-011-0795-5
  41. Qiao Q, Zhang J, Ma C, et al. Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PloS One. 2019;14(10):e0207903 https://doi.org/10.1371/journal.pone.0207903
  42. Floc'h JB, Hamel C, Harker KN, et al. Fungal communities of the canola rhizosphere: keystone species and substantial between-year variation of the rhizosphere microbiome. Microbial Ecol. 2020. DOI:10.1007/s00248-019-01475-8

Cited by

  1. Four Unrecorded Aspergillus Species from the Rhizosphere Soil in South Korea vol.49, pp.4, 2020, https://doi.org/10.1080/12298093.2021.1944461
  2. Seven New Records of Penicillium Species Belonging to Section Lanata-Divaricata in Korea vol.49, pp.4, 2020, https://doi.org/10.1080/12298093.2021.1952814
  3. New Species and Eight Undescribed Species Belonging to the Families Aspergillaceae and Trichocomaceae in Korea vol.49, pp.6, 2021, https://doi.org/10.1080/12298093.2021.1997461
  4. Investigation of the Fungal Diversity of the Federated States of Micronesia and the Construction of an Updated Fungal Inventory vol.49, pp.6, 2020, https://doi.org/10.1080/12298093.2021.2012327