• Title/Summary/Keyword: truncation error

Search Result 94, Processing Time 0.035 seconds

Frequency Weighted Model Reduction Using Structurally Balanced Realization

  • Oh, Do-Chang;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.366-370
    • /
    • 2003
  • This paper is on weighted model reduction using structurally balanced truncation. For a given weighted(single or double-sided) transfer function, a state space realization with the linear fractional transformation form is obtained. Then we prove that two block diagonal LMI(linear matrix inequality) solutions always exist, and it is possible to get a reduced order model with guaranteed stability and a priori error bound. Finally, two examples are used to show the validity of proposed weighted reduction method, and the method is compared with other existing methods.

  • PDF

Frequency weighted reduction using Lyapunov inequalities (Lyapunov 부등식을 이용한 주파수하중 차수축소)

  • 오도창;정은태;이상경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper consider a new weighted model reduction using block diagonal solutions of Lyapunov inequalities. With the input and/or output weighting function, the stability of reduced order system is quaranteed and a priori error bound is proposed. to achieve this, after finding the solutions of two Lyapunov inequalities and balancing the full order system, we find the reduced order systems using the direct truncation and the singular perturbation approximation. The proposed method is compared with other existing methods using numerical example.

  • PDF

A Study of Multi-Channel Video Transfer System with EBCOT (EBCOT를 이용한 다 채널 영상 전송 시스템에 대한 연구)

  • 추연학;김영민
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 2001
  • A EBCOT(Embedded Block Coding with Optimized Truncation) is image compression codec using in JPEG2000, currently the new standard for still image coding. this paper proposes multi-channel video transfer system with EBCOT using a single codec to transfer video to difference band-width channel. This parer testify that compression rate of EBCOT higher than ordinary VLC using RLC and Huffman codec and apply EBCOT to JPEG structure. this structure increases parallelism and error resilience using black coding method. finally it looks into difficult to apply MPEG structure to multi channel video transfer system, and proposes solution using EBCOT.

  • PDF

Adaptive Block Truncation Coding Based on Gradient Information (경사도를 이용한 적응 구획 절단 부호화)

  • 신용달;이봉락;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1546-1552
    • /
    • 1993
  • We proposed an adaptive block truncation coding(BTC) using gradient and a new initial value. We used gradient of sobel operator as a new category classification coefficient to reduce Jagged appearance at edge part. We defined a new initial value to reduce large quantization error in the 4-level quantizer block including edge part. By computer simulations, we showed that the proposed method less computation load, reduced jagged appearance at edge part, also improved PSNR more than the conventional adaptive BTC.

  • PDF

Improved GRS80 Gravimetric Geoid in the South Korea Region (KGM93) (개선된 남한지역의 GRS80 중력지오이드 모델 (KGM93))

  • 조규전;이영진;조봉환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 1994
  • Neglecting distant zones in the computation of geoidal heights using Stokes'formula give rise to some truncation errors. The GRS80 Korean Gravimetric geoid Model 1993(KGM93) of the South Korea region was implemented, in this paper, using a combination of satellite-derived GEM-T2 gravity and terrestrial gravity data. A spherical cap size of 30 degree is used on the integration and the truncation error is compensated to the free-air geoid. The results of this study show that the accuracy of the KGM93-C has one meter level.

  • PDF

Linear Unequal Error Protection Codes based on Terminated Convolutional Codes

  • Bredtmann, Oliver;Czylwik, Andreas
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.12-20
    • /
    • 2015
  • Convolutional codes which are terminated by direct truncation (DT) and zero tail termination provide unequal error protection. When DT terminated convolutional codes are used to encode short messages, they have interesting error protection properties. Such codes match the significance of the output bits of common quantizers and therefore lead to a low mean square error (MSE) when they are used to encode quantizer outputs which are transmitted via a noisy digital communication system. A code construction method that allows adapting the code to the channel is introduced, which is based on time-varying convolutional codes. We can show by simulations that DT terminated convolutional codes lead to a lower MSE than standard block codes for all channel conditions. Furthermore, we develop an MSE approximation which is based on an upper bound on the error probability per information bit. By means of this MSE approximation, we compare the convolutional codes to linear unequal error protection code construction methods from the literature for code dimensions which are relevant in analog to digital conversion systems. In numerous situations, the DT terminated convolutional codes have the lowest MSE among all codes.

An Enhanced Chebyshev Collocation Method Based on the Integration of Chebyshev Interpolation

  • Kim, Philsu
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.287-299
    • /
    • 2017
  • In this paper, we develop an enhanced Chebyshev collocation method based on an integration scheme of the generalized Chebyshev interpolations for solving stiff initial value problems. Unlike the former error embedded Chebyshev collocation method (CCM), the enhanced scheme calculates the solution and its truncation error based on the interpolation of the derivative of the true solution and its integration. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have the $7^{th}$ convergence order and the A-stability without any loss of advantages for CCM. Throughout a numerical result, we assess the proposed method is numerically more efficient compared to existing methods.

A Fixed-Point Error Analysis of fast DCT Algorithms (고정 소수점 연산에 의한 고속 DCT 알고리듬의 오차해석)

  • 연일동;이상욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.331-341
    • /
    • 1991
  • The discrete cosine transform (DCT) is widely used in many signal processing areas, including image and speech data compression. In this paper, we investigate a fixed-point error analysis for fast DCT algorithms, namely, Lee [6], Hou [7] and Vetterli [8]. A statistical model for fixed-point error is analyzed to predict the output noise due to the fixed-point implementation. This paper deals with two's complement fixed-point data representation with truncation and rounding. For a comparison purpose, we also investigate the direct form DCT algorithm. We also propose a suitable scaling model for the fixed-point implementation to avoid an overflow occurring in the addition operation. Computer simulation results reveal that there is a close agreement between the theoretical and the experimental results. The result shows that Vetterli's algorithm is better than the other algorithms in terms of SNR.

  • PDF

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.