Browse > Article
http://dx.doi.org/10.1109/JCN.2015.000004

Linear Unequal Error Protection Codes based on Terminated Convolutional Codes  

Bredtmann, Oliver (Department of Communication Systems, University of Duisburg-Essen)
Czylwik, Andreas (Department of Communication Systems, University of Duisburg-Essen)
Publication Information
Abstract
Convolutional codes which are terminated by direct truncation (DT) and zero tail termination provide unequal error protection. When DT terminated convolutional codes are used to encode short messages, they have interesting error protection properties. Such codes match the significance of the output bits of common quantizers and therefore lead to a low mean square error (MSE) when they are used to encode quantizer outputs which are transmitted via a noisy digital communication system. A code construction method that allows adapting the code to the channel is introduced, which is based on time-varying convolutional codes. We can show by simulations that DT terminated convolutional codes lead to a lower MSE than standard block codes for all channel conditions. Furthermore, we develop an MSE approximation which is based on an upper bound on the error probability per information bit. By means of this MSE approximation, we compare the convolutional codes to linear unequal error protection code construction methods from the literature for code dimensions which are relevant in analog to digital conversion systems. In numerous situations, the DT terminated convolutional codes have the lowest MSE among all codes.
Keywords
Analog-digital conversion; convolutional codes; error wireless networked control systems; protection; quantization; source-channel codes; unequal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Li et al., "Networked fault detection systems with noisy data transmission," Automatisierungstechnik, vol. 56, pp. 49-57, 2008.
2 P. Wintz and A. Kurtenbach, "Waveform error control in pcm telemetry," IEEE Trans. Inf. Theory, vol. 14, no. 5, pp. 650-661, 1968.   DOI
3 C. Kilgus and W. Gore, "Root-mean-square error in encoded digital telemetry," IEEE Trans. Commun., vol. 20, no. 3, pp. 315-320, 1972.   DOI
4 A. Nazer and F. Alajaji, "Unequal error protection and source-channel decoding of celp speech," Electron. Lett., vol. 38, no. 7, pp. 347-349, 2002.   DOI
5 M.M. Buchner, "Coding for numerical data transmission," Bell Syst. Technical J., vol. 46, pp. 1025-1041, 1966.
6 A. Bernstein, K. Steiglitz, and J. Hopcroft, "Encoding of analog signals for binary symmetric channels," IEEE Trans. Inf. Theory, vol. 12, no. 4, pp. 425-430, 1966.   DOI
7 A. El Gamal et al., "Using simulated annealing to design good codes," IEEE Trans. Inf. Theory, vol. 33, no. 1, pp. 116-123, 1987.   DOI
8 D. Mandelbaum, "Unequal error protection codes derived from difference sets (corresp.)," IEEE Trans. Inf. Theory, vol. 18, no. 5, pp. 686-687, 1972.   DOI
9 F. Ozbudak and H. Stichtenoth, "Constructing linear unequal error protection codes from algebraic curves," IEEE Trans. Inf. Theory, vol. 49, no. 6, pp. 1523-1526, 2003.   DOI
10 M. Matsunaga, D. Asano, and R. Kohne, "Unequal error protection using several convolutional codes," in Proc. ISIT, 1997.
11 R. H. Morelos-Zaragoza and H. Imai, "Binary multilevel convolutional codes with unequal error protection capabilities," IEEE Tran. Commun., pp. 850-853, 1998.
12 C. Pimentel et al., "Generalized punctured convolutional codes with unequal error protection," EURASIP J. Adv. Signal Process., 2008.
13 J. R. Palazzo, "On the linear unequal error protection convolutional codes," in IEEE GLOBECOM, 1986, pp. 1367-1371.
14 D. G. Mills and J. D. J. Costello, "A bound on the unequal error protection capabilities of rate k/n convolutional codes," in Proc. IEEE ISIT, 1994.
15 V. Pavlushkov, R. Johannesson, and V. V. Zyablov, "Unequal error protection for convolutional codes," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 700-708, 2006.   DOI
16 R. Jordan et al., "Woven convolutional codes and unequal error protection," in Proc. IEEE ISIT, 2001, p. 299.
17 H. Ma and J. Wolf, "Binary unequal error-protection block codes formed from convolutional codes by generalized tail-biting," IEEE Trans. Inf. Theory, vol. 32, no. 6, pp. 776-786, 1986.   DOI
18 S. Bates, Z. Chen, and X. Dong, "Low-density parity-check convolutional codes for ethernet networks," IEEE PACRIM, 2005, pp. 85-88.
19 G. Redinbo, "Optimum symbol-by-symbol mean-square error channel coding," IEEE Trans. Inf. Theory, vol. 25, no. 4, pp. 387-405, 1979.   DOI
20 T. Crimmins and H. Horwitz, "Mean-square-error optimum coset leaders for group codes," IEEE Trans. Inf. Theory, vol. 16, no. 4, pp. 429-432, 1970.   DOI
21 G. Redinbo, "On the design of mean-square error channel coding systems using cyclic codes," IEEE Trans. Inf. Theory, vol. 28, no. 3, pp. 406-413, 1982.   DOI
22 G. Redinbo, "Optimum mean-square error use of convolutional codes," IEEE Trans. Inf. Theory, vol. 31, no. 1, pp. 18-33, 1985.   DOI
23 G. Wolf and G. Redinbo, "The optimum mean-square estimate for decoding binary block codes," IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 344-351, 1974.   DOI
24 S. Heinen and P. Vary, "Source-optimized channel coding for digital transmission channels," IEEE Trans. Inf. Theory, vol. 53, pp. 592-600, 2005.
25 I. Na and D. L. Neuhoff, "The best binary linear block codes for scalar source-channel coding," in Proc. IEEE ISIT, 2007, pp. 741-745.
26 S. Kim and D. L. Neuhoff, "Snake-in-the-box codes as robust quantizer index assignments," in Proc. IEEE ISIT, 2000, p. 402.
27 F. Preparata and J. Nievergelt, "Difference-preserving codes," IEEE Trans. Inf. Theory, vol. 20, no. 5, pp. 643-649, 1974.   DOI
28 O. Bredtmann, "Unequal error protection coding of quantized data," Dissertation, Univ. Duisburg-Essen, Duisburg, 2010.
29 S. W. McLaughlin, D. L. Neuhoff, and J. J. Ashley, "Optimal binary index assignments for a class of equiprobable scalar and vector quantizers," IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 2031-2037, 1995.   DOI
30 H. van Tilborg, "On quasi-cyclic codes with rate l/m (corresp.)," IEEE Trans. Inf. Theory, vol. 24, no. 5, pp. 628-630, 1978.   DOI
31 G. C. Clark Jr. and J. B. Cain, "Error-Correction Coding for Digital Communications," Perseus Publishing, 1987.
32 G. Poltyrev, "Bounds on the decoding error probability of binary linear codes via their spectra," IEEE Trans. Inf. Theory, pp. 1284-1292, 1994.
33 M. J. Ryan and M. Frater, "Communications and information systems," Argos Press Series in Telecommunication Systems, 2002.
34 M. P. C. Fossorier, S. Lin, and D. Rhee, "Bit-error probability for maximum-likelihood decoding of linear block codes and related softdecision decoding methods," IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 3083-3090, 1998.   DOI
35 W. van Gils, "Some constructions of linear unequal error protection codes," Philips J. Res., vol. 39, pp. 293-304, 1984.
36 L. H. Harper, "Optimal assignment of numbers to vertices," SIAM, vol. 12, no. 1, pp. 131-135, 1964.
37 L. Dunning and W. Robbins, "Optimal encoding of linear block codes for unequal error protection," Inf. Control, vol. 37, pp. 150-177, 1978.   DOI
38 B. Masnick, J. Wolf, "On linear unequal error protection codes," IEEE Trans. Inf. Theory, vol. 13, no. 4, pp. 600-607, 1967.   DOI
39 W. van Gils, "Linear unequal error protection codes from shorter codes (corresp.)," IEEE Trans. Inf. Theory, vol. 30, no. 3, pp. 544-546, 1984.   DOI
40 W. van Gils, "Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes," IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 866-876, 1983.   DOI
41 M.-C. Lin, C.-C. Lin, and S. Lin, "Computer search for binary cyclic uep codes of odd length up to 65," IEEE Trans. Inf. Theory, vol. 36, no. 4, pp. 924-935, 1990.   DOI
42 R. H. Morelos-Zaragoza and S. Lin, "On a class of optimal nonbinary linear unequal-error-protection codes for two sets of messages," IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 196-200, 1994.   DOI
43 M.-C. Chiu and C.-C. Chao, "A new construction of nonlinear unequal error protection codes," in Proc. IEEE ISIT, 1995, p. 496.
44 G. Buch and F. Burket, "Non-linear codes and concatenated codes for unequal error protection," in Proc. MELECON, 1998, pp. 851-855.
45 E. K. Englund and A. I. Hansson, "Constructive codes with unequal error protection," IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 715-721, 1997.   DOI
46 M. Cedervall, R. Johannesson, and K. Zigangirov, "A new upper bound on the first-event error probability for maximum-likelihood decoding of fixed binary convolutional codes (corresp.)," IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 762-766, 2003.   DOI
47 D. J. Goodman and T. J. Mousley, "Using simulated annealing to design digital transmission codes for analogue sources," Electron. Lett., vol. 24, no. 10, pp. 617-619, 1988.   DOI
48 O. Bredtmann and A. Czylwik, "Truncated convolutional codes as a new approach of unequal error protection," in Proc. IEEE VTC, 2010.
49 J. R. Palazzo, "Linear unequal error protection convolutional codes," in Proc. IEEE ISIT, 1985, pp. 88-89.