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Abstract: This paper is on weighted model reduction using structurally balanced truncation. For a given weighted(single or

double-sided) transfer function, a state space realization with the linear fractional transformation form is obtained. Then we

prove that two block diagonal LMI(linear matrix inequality) solutions always exist, and it is possible to get a reduced order

model with guaranteed stability and a priori error bound. Finally, two examples are used to show the validity of proposed

weighted reduction method, and the method is compared with other existing methods.
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1. Introduction

Balanced truncation and Hankel-norm approximation are

based on the balanced realization using solutions of Lya-

punov equations, and frequency domain error bounds can be

obtained from the Hankel singular values[1],[2]. Enns [3] ex-

tended the balanced truncation technique to the frequency

weighted case. With only input or output weighting (single-

sided weighting) present, stability of the reduced order model

is guaranteed. However, with both weighting(double-sided

weighting) functions present, Enns’ method may yield un-

stable models for stable original systems. To overcome the

drawback of instability, Lin and Chiu [4] proposed a new fre-

quency weighted balanced reduction technique, and Sreeram

et. al.[5] extended it to the general case. Frequency do-

main error bound formulas for the above two methods were

proposed by Kim [6] and Sreeram [5], respectively. To over-

come the drawback that the computation of error bounds

is achieved iteratively, Wang et. al.[7] proposed another

frequency weighted model reduction technique, and derived

a formula for the error bound. Although Wang’s method

solves the problem that the error bounds are calculated it-

eratively, it has two problems to the author’s knowledge.

One is that the method still does not solve the problem that

the error bound formula involves computation of infinity-

norms of low order transfer functions. The other is that

it has to go through many complicated steps to find the

reduced order model. In this paper, we propose a simple

frequency weighted model reduction using structurally bal-

anced truncation(SBT) and show the existence of the so-

lution, which is obtained via two linear matrix inequali-

ties(LMIs). This method was first mentioned by Zhou et.

al.[8]. To find a reduced order model, we prove that two

block diagonal LMI solutions always exist. Furthermore, a

simple a priori error bound is derived without any compu-

tation of infinity-norm, some examples are used to show the

validity of proposed method, and the method is compared

with other existing methods. Now, the notation used in this

paper is introduced. MT denotes the transpose of matrix M

∈ <p×q and tr(M), if p = q, denotes the trace of M , and

λi(M) denotes ith eigenvalue of M . A diagonal matrix with

m1, m2, · · · , mp as its diagonal elements is denoted by diag(

m1, m2, · · · , mp). Similarly, a block diagonal matrix with

M1, M2, · · · , Mk as the block diagonal entries is denoted by

diag(M1, M2, · · · , Mk). Let P (s) be a rational proper trans-

fer matrix, the set of all rational proper and stable transfer

function is denoted by RH∞.

2. Structurally balanced reduction
In this section, we review the structurally balanced reduc-

tion proposed by Zhou [8]. Consider the nth-order transfer

function P (s) and the mth-order transfer function K(s) =:[
A B

C D

]
with P (s) is partitioned as

P (s) =

[
P11(s) P12(s)

P21(s) P22(s)

]
. (1)

The closed-loop transfer function in linear fractional trans-

formation form is given by

Tzw = P11 + P12K(I − P22K)−1P21 =:

[
Ā B̄

C̄ D̄

]
, (2)

where K(s) is a high order model, and Tzw(s) ∈ RH∞. If

there exist block diagonal solutions M and N such that

ĀM + MĀT + B̄B̄T ≤ 0, M = diag(Mp, Mk) ≥ 0,(3)

ĀT N + NĀ + C̄T C̄ ≤ 0, N = diag(Np, Nk) ≥ 0, (4)

then nonsingular matrices Tp and Tk exist such that

TpMpT T
p = T−T

p NpT−1
p

= diag(ζ1, ζ2, · · · , ζn), ζ1 ≥ ζ2 ≥ · · · ≥ ζn,(5)

TkMkT T
k = T−T

k NkT−1
k

= diag(η1, η2, · · · , ηr, ηr+1, · · · , ηm),

η1 ≥ η2 ≥ · · · ≥ ηm (6)

with Σk1 = diag(η1, · · · , ηr), Σk2 = diag(ηr+1, · · · , ηm). It is

assumed that Σk1 and Σk2 have no diagonal entries in com-

mon and r is the order of the reduced order model to be

found. Using the similarity transformation matrix Tk, the

structurally balanced realization of K(s) is obtained, and it



is partitioned conformably with diag(Σk1, Σk2) as

K(s) =

[
TkAT−1

k TkB

CT−1
k D

]
=:

[
Ab Bb

Cb Db

]

=

 Ab1 Ab2 Bb1

Ab3 Ab4 Bb2

Cb1 Cb2 D

 . (7)

Theorem 1 [8]: For the structurally balanced realization of

K(s), which is assumed to be RH∞, the reduced order model

by SBT is obtained as

Kr(s) =

[
Ab1 Bb1

Cb1 Db

]
. (8)

Let Tzwr(s)be a closed-loop transfer function by linear frac-

tional transformation with P (s) andKr(s), then

Kr(s) ∈ RH∞, ‖Tzw(s)− Tzwr(s)‖∞ ≤ 2tr(Σk2). (9)

From theorem 1, it is to be seen that the stable reduced

order controller with simple error bound is obtained when

two block diagonal LMI solutions M and N exist. In the next

section, the existence of the block diagonal LMI solutions for

the weighted model reduction problem will be shown.

3. Frequency weighted reduction
Now we consider K(s) as a transfer function model with

input and output weighting functions, Wi and Wo, respec-

tively, and assume that these functions are all in RH∞. Then

the frequency weighted model reduction problem is to find a

reduced order model Kr(s) such that

‖Wo(K −Kr)Wi‖∞ < γ, (10)

where γ is an a priori error bound, the realizations of Wi

and Wo are given by

Wi(s) =

[
Ai Bi

Ci Di

]
and Wo(s) =

[
Ao Bo

Co Do

]
, (11)

respectively, and it is desired that the error bound is easy to

find. From (1) in section 2, if we take P11(s) = 0, P12(s) =

Wo(s), P21(s) = Wi(s), P22(s) = 0, the following state space

realization is obtained.

P (s) =

[
0 Wo(s)

Wi(s) 0

]
=


Ao 0 0 Bo

0 Ai Bi 0

Co 0 0 Do

0 Ci Di 0

 .

(12)

Therefore, the state space realization of the closed-loop sys-

tem Tzw(s) with P (s) and K(s) is represented by the follow-

ing formula:

Tzw(s) =

[
Ā B̄

C̄ D̄

]
=


Ao BoDCi BoC BoDDi

0 Ai 0 Bi

0 BCi A BDi

Co DoDCi DoC DoDDi

 .

(13)

The stable reduced order model with simple error bound is

obtained by theorem 1 when two block diagonal LMI solu-

tions M and N in (3) and (4) exist. Although it is very easy

to get a solution by this method and the method gives a sim-

ple error bound without the computation of infinity-norm,

the existence of the two block diagonal LMI solutions have

not been verified. The following Lemma 1 is introduced as a

preliminary step to prove the existence of the LMI solutions.

Lemma 1[9]: For the symmetric matrix L =[
L11 L12

LT
12 L22

]
, we have

i) L11 < 0, L22 − LT
12L

−1
11 L12 ≤ 0 ⇒ L ≤ 0

ii) L22 < 0, L11 − L12L
−1
22 LT

12 ≤ 0 ⇒ L ≤ 0.

Theorem 2: Consider the single-sided and the double-sided

frequency weighted model reduction problems with a state

space realization, (Aw, Bw, Cw, Dw). There exist nonnega-

tive block diagonal solutions M and N such that

AwM + MAT
w + BwBT

w ≤ 0, (14)

AT
wN + NAw + CT

wCw ≤ 0, (15)

where the structures of (Aw, Bw, Cw, Dw), M , and Nare de-

fined as follows:

i) For the right-sided weighting(‖(K −Kr)Wi‖∞

[
Aw Bw

Cw Dw

]
=

 Ai 0 Bi

BCi A BDi

DCi C DDi

 , (16)

M = diag(Mi, Mk), N = diag(Ni, Nk). (17)

ii) For the left-sided weighting(‖Wo(K −Kr)‖∞

[
Aw Bw

Cw Dw

]
=

 Ao BoC BoD

0 A B

Co DoC DoD

 , (18)

M = diag(Mo, Mk), N = diag(No, Nk). (19)

iii) For the double-sided weighting(‖Wo(K −Kr)Wi‖∞)

[
Aw Bw

Cw Dw

]
=


Ao BoDCi BoC BoDDi

0 Ai 0 Bi

0 BCi A BDi

Co DoDCi DoC DoDDi

 ,

(20)

M = diag(M11, M22, Mk), N = diag(N11, N22, Nk). (21)

Proof: i) Substituting (16) and (17) to (14), we have[
AiMi + MiA

T
i + BiB

T
i MiC

T
i BT + BiD

T
i BT

BCiMi + BDiB
T
i AMk + MkAT + BDiD

T
i BT

]
≤ 0.

(22)

Let L be the left-sided matrix in (22), Lij being the i th row

and jth column submatrix. Since Ai is a stable matrix, there

exists nonnegative Mi satisfying L11 < 0. And given that

R = −L11(> 0), then R−1 exists. From the second condition

in i) of Lemma 1 we require

L22 + LT
12R

−1L12 ≤ 0, (23)



Furthermore, since A is a stable matrix, there exists Mk

satisfying (23). Thus it is shown that there exists a block

diagonal nonnegative solution M satisfying (14). Now sub-

stituting (16) and (17) to (15), we get the following LMI:[
AT

i Ni + NiAi + CT
i DT DCi CT

i BT Nk + CT
i DT C

NkBCi + CT DCi AT Nk + NkA + CT C

]
≤ 0.

(24)

Similar to (22), let L be the left-sided matrix in (24), Lij

being the ith row and jth column submatrix. Since A is a

stable matrix, there exists nonnegative Nk satisfying L22 <

0. And given that S = −L22(> 0), then we require

L11 + L12S
−1LT

12 ≤ 0, (25)

from the second condition in ii) of Lemma 1. Since Ai is

a stable matrix, there exists nonnegative Ni satisfying (25).

Therefore it is proved that there exists a nonnegative block

diagonal solution N satisfying (15).

ii) Substituting (18) and (19) to (14) and (15) respectively,

we get the following two LMIs:[
AoMo + MoAT

o + BoDDT BT
o BoCMk + BoDBT

MkCT BT
o + BDT BT

o AMk + MkAT + BBT

]
≤ 0,

(26)[
AT

o No + NoAo + CT
o Co NoBoC + CT

o DoC

CT BT
o No + CT DT

o Co AT Nk + NkA + CT DT
o DoC

]
≤ 0.

(27)

The existence of nonnegative block diagonal solutions M and

N satisfying (14) and (15) respectively could be easily proved

just as in the proof of part i). So we will skip the proof.

iii) Substituting (20) and (21) to (14), we get the following

matrix L.

L =

[
L11 L12 L13

LT
12 L22 L23

LT
13 LT

23 L33

]
=

[
AoM11 + M11AT

o + BoDDiDT
i DT BT

o

∗
∗

BoDCiM22 + BoDDiBT
i BoCMk + BoDDiDT

i BT

AiM22 + M22AT
i + BiBT

i M22CT
i BT + BiDT

i BT

∗ AMk + MkAT + BDiDT
i BT

]
(28)

Now there exists M22 = MT
22 ≥ 0 such that L22 < 0 since

Ai is stable. Then L22 and L23 are known. Next, there

exists Mk = MT
k ≥ 0 such that L33 − LT

23L22
−1L23 < 0

since A is stable. From the well-known schur complement,

this proves that

[
L22 L23

LT
23 L33

]
< 0. Also, L12 and L13 are

known. Finally, there exists M11 = MT
11 ≥ 0 such that

L11 −
[

L12 L13

] [
L22 L23

LT
23 L33

]−1 [
LT

12

LT
13

]
≤ 0 (29)

since Ao is stable. This proves that L ≤ 0 from lemma 1.

Now substituting (20) and (21) to (15), we get the following

matrx L:

L =

[
L11 L12 L13

LT
12 L22 L23

LT
13 LT

23 L33

]
=

[
AT

o N11 + N11Ao + CT
o Co

∗
∗

N11BoDCi + CT
o DoDCi N11BoC + CT

o DoC

AT
i N22 + N22Ai + CT

i DT DT
o DoDCi CT

i BT Nk + CT
i DT DT

o DoC

∗ AT Nk + NkA + CT DT
o DoC

]
,

(30)

there exists N11 = NT
11 ≥ 0 such that L11 < 0 since Ao is

stable. Then L12 and L13 are known. Next, consider the
following submatrix[

L22 L23

LT
23 L33

]
=

[
AT

i CT
i BT

0 AT

][
N22 0

0 Nk

]
+

[
N22 0

0 Nk

][
Ai 0

BCi A

]
+

[
CT

i DT DT
o

CT DT
o

][
DoDCi DoC

]
, (31)

then a proof similar to part i) shows that the positive

semidefinite solution diag(N22, Nk) exists such that[
L22 L23

LT
23 L33

]
−

[
LT

12

LT
13

]
L11

−1
[

L12 L13

]
≤ 0 (32)

since

[
Ai 0

BCi A

]
is stable. This proves that L ≤ 0 from

lemma 1. From these results we conclude that there exist

the block diagonal solutions M and N satisfying (14) and

(15) respectively. 2

If we assume that M = diag(

[
M11 M12

MT
12 M22

]
, Mk) and N =

diag(

[
N11 N12

NT
12 N22

]
, Nk) with M12 6= 0 and N12 6= 0, the

existence of positive semidefinite solution M and N is not

guaranteed, even if it is more reasonable assumption.

Corollary 1: If K(s) is strictly proper(DK = 0), then M =

diag(

[
M11 M12

MT
12 M22

]
, Mk) and N = diag(

[
N11 N12

NT
12 N22

]
, Nk) always exist such that two LMIs (14) and (15) are

satisfied with (Aw, Bw, Cw, Dw) of (20).

Proof: Substituting (20) and M to (14) and comparing the
left-sided matrix of the obtained inequality to the symmetric
matrix L in lemma 1, we get the following submatrices L11,
L12, and L22.

L11 = AwoM11 +
[

BwoDKCwi BwoCK

][
MT

12

0

]
+M11A

T
wo +

[
M12 0

][
CT

wiD
T
KBwo

CT
KBT

wo

]
+BwoDKDwiD

T
wiD

T
KB

T
wo,

L12 = Awo

[
M12 0

]
+

[
BwoDKCwi BwoCK

]
×

[
M22 0

0 Mk

]
+

[
M12 0

][
AT

wi CT
wiB

T
K

0 AT
K

]
+BwoDKDwi

[
BT

wi DT
wiB

T
K

]
,

L22 =

[
Awi 0

BKCwi AK

][
M22 0

0 Mk

]
+

[
M22 0

0 Mk

][
AT

wi CT
wiB

T
K

0 AT
K

]
+

[
Bwi

BKDwi

][
BT

wi DT
wiB

T
K

]
. (33)

Since

[
Awi 0

BKCwi AK

]
is a stable matrix, there exists

diag(M22, Mk) ≥ 0 satisfying L22 < 0, if K(s) is strictly



proper(DK = 0), then M11(≥ 0) and M12 exist such that
L11 + L12(−L22)

−1LT
12 ≤ 0. Now substituting (20) and N

to (15) and comparing the left-sided matrix of the obtained
inequality to the symmetric matrix L in lemma1, we get the
following submatrices L11, L12, and L22.

L11 = A
T
woN11 + N11Awo + C

T
woCwo,

L12 = A
T
wo

[
N12 0

]
+ N11

[
BwoDKCwi BwoCK

]
+

[
N12 0

][
Awi 0

BKCwi AK

]
+C

T
wo

[
DwoDKCwi DwoCK

]
,

L22 =

[
CT

wiD
T
KBT

wo

CT
KBT

wo

][
N12 0

]
+

[
AT

wi CT
wiB

T
K

0 AT
K

][
N22 0

0 Nk

]
+

[
NT

12

0

][
BwoDKCwi BwoCK

]
+

[
N22 0

0 Nk

][
Awi 0

BKCwi AK

]
+

[
CT

wiD
T
KDT

wo

CT
KDT

wo

][
DwoDKCwi DwoCK

]
, (34)

similarly, since the positive semidefinite solution N11 exists

such that L11 < 0, diag(N22, Nk)(≥ 0) and N12 exist such

that L22 + LT
12(−L11)

−1L12 ≤ 0. And it means that we

can find M11(≥ 0) such that L11 + L12(−L22)
−1LT

12 ≤ 0

for any M12, and find diag(N22, Nk)(≥ 0) such that L22 +

LT
12(−L11)

−1L12 ≤ 0 for any N12.2

Note that the stability of reduced order model is guaran-

teed by the proposed method, and that the error bound is

obtained as follows:

‖Wo(K −Kr)Wi‖∞ ≤ 2tr(Σk2), (35)

where Σk2 is the structurally balancing solution for the trun-

cated model as defined in (6). This error bound is an a priori

error bound, and it is very simple to get the error bound and

it is not necessary to compute the infinity-norm of transfer

functions unlike other methods proposed by Kim [6], Sreeram

[5], and Wang [7]. Considering the error bound in (35), it is

desirable to choose M and N such that Σm
i=r+1λ

1/2
i (MkNk)

is minimized. However, since the optimization involved is

not convex, such solutions are hard to compute. Then we

have the following procedure:

i) Find M = diag(M1, Mk) that minimizes Σm
i=1λi(Mk) =

tr(Mk) subject to (14). Similarly find N = diag(N1, Nk)

that minimizes Σm
i=1λi(Nk) = tr(Nk) subject to (15).

ii) Find a nonsingular Tk using any existing balancing algo-

rithm so that (14) is satisfied.

iii) A reduced-order model Kr is obtained as (8) such that

Kr ∈ RH∞ and the error bound (35) is satisfied.

4. Numerical example
To demonstrate the validity of proposed method, we present

two examples which have been used by Sreeram [5] and Wang

[7], and the actual error and error bound are compared with

other existing methods.

Example 1: This example has been used by Sreeram [5].

For this example, reduced order models of order1-2 are ob-

tained using: four different methods: 1) Enns’ method; 2)

Lin and Chiu’s method; 3) Wang’s method; 4) the proposed

method. The error bounds are computed using Kim et al.,

Sreeram et al., Wang et al., and the proposed method. Con-

sider the third-order system

8s2 + 6s + 2

s3 + 4s2 + 5s + 2

with the following input and output weights:

1

s + 5.8
, and

1

s + 4

The following table gives a comparison of errors and errors

bounds for the models obtained by the proposed method and

other existing methods.

Table 1. The errors and error bounds with input and output

weightings; error(error bound)

order Enns’ Lin & Chiu’s Wang’s proposed

method method method method

1 0.0883 0.0885 0.08835 0.0597

(0.3828) (0.2257) (0.2709) (0.0696)

2 0.0067 0.0074 0.00709 0.00704

(0.0070) (0.0087) (0.0340) (0.00704)

Using table 1, show that it is possible to get lower errors

and error bounds with the proposed technique than with

the other methods, except for 2nd-order case with the Enns’

method. The error bound in the proposed method is less

conservative than other methods.

Example 2: This example has been used by Wang[7]. Con-

sider a fourth-order system given by

A =


−0.6503 −0.2734 0.0030 −0.1815

0.2883 −1.0171 0.0102 −1.2651

0.0377 0.1087 −0.0011 −3.2129

0.8699 −4.6643 16.1671 −18.3349



B =


3.3317 3.2155

−1.9209 −0.0978

−4.5402 2.6599

−17.4882 6.0988


C =

[
31.5142 6.4374 −0.0750 4.3834

]
with the following input weight:

Ai =

[
−8 0

1 −3

]
, Bi =

[
3

10

]
, Ci =

[
−2 2

3 1

]
, Di =

[
1

2.17

]
The results are represented in the table 2. For this example,

Enns’ method gives very large errors, and the error bound is

very conservative. The actual error by the proposed method

may be smaller or larger than other methods, but the error

bound is less conservative with the proposed method than

with other methods.

There are two values on the proposed method for each order.

The 2nd row value is obtained from M and N such that min-

imize the trace of a submatrix of Mk and Nk respectively.



Table 2. The errors and error bounds with input weightings

order Enns’ error Wang’s error proposed error

method bound method bound method bound

1 39.5692 5479.8 38.4689 96.5676 45.5450 59.0401

43.4354 59.6946

2 1.3787 5427.7 3.4582 19.9932 4.8944 15.5846

3.2617 14.5691

3 594.7 5414.5 6.2949 8.4325 5.3514 5.4070

5.6634 5.7437

It means that, if the actual error becomes smaller, the min-

imization index for the LMI solutions Mk and Nk can be

different from the procedure in section 2.

5. Conclusions
In this paper, a simple frequency weighted model reduction

technique using structurally balanced truncation has been

proposed, and we have proved that two block diagonal LMI

solutions always exist, and obtained a reduced order model

with guaranteed stability and a priori error bound. One of

advantages of the proposed method is that the error bound

is easily obtained from the LMI solutions without infinity-

norm computation of transfer functions. Two illustrative

examples have been given to demonstrate the validity of the

proposed method.
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