• Title/Summary/Keyword: triggering voltage

Search Result 52, Processing Time 0.032 seconds

Development and Testing of a Prototype Long Pulse Ion Source for the KSTAR Neutral Beam System

  • Chang Doo-Hee;Oh Byung-Hoon;Seo Chang-Seog
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.357-363
    • /
    • 2004
  • A prototype long pulse ion source was developed, and the beam extraction experiments of the ion source were carried out at the Neutral Beam Test Stand (NBTS) of the Korea Superconducting Tokamak Advanced Research (KSTAR). The ion source consists of a magnetic bucket plasma generator, with multi-pole cusp fields, and a set of tetrode accelerators with circular apertures. Design requirements for the ion source were a 120kV/65A deuterium beam and a 300 s pulse length. Arc discharges of the plasma generator were controlled by using the emission-limited mode, in turn controlled by the applied heating voltage of the cathode filaments. Stable and efficient arc plasmas with a maximum arc power of 100 kW were produced using the constant power mode operation of an arc power supply. A maximum ion density of $8.3{\times}10^{11}\;cm^{-3}$ was obtained by using electrostatic probes, and an optimum arc efficiency of 0.46 A/kW was estimated. The accelerating and decelerating voltages were applied repeatedly, using the re-triggering mode operation of the high voltage switches during a beam pulse, when beam disruptions occurred. The decelerating voltage was always applied prior to the accelerating voltage, to suppress effectively the back-streaming electrons produced at the time of an initial beam formation, by the pre-programmed fast-switch control system. A maximum beam power of 0.9 MW (i.e. $70\;kV{\times}12.5\;A$) with hydrogen was measured for a pulse duration of 0.8 s. Optimum beam perveance, deduced from the ratio of the gradient grid current to the total beam current, was $0.7\;{\mu}perv$. Stable beams for a long pulse duration of $5{\sim}10\;s$ were tested at low accelerating voltages.

A New Design of Fuzzy controller for HVDC system with the aid of GAs (HVDC 시스템에 대한 유전자 알고리즘을 사용한 새로운 퍼지 제어기의 설계)

  • Wang Zhong-Xian;Yang Jueng-Je;Rho Seok-Beom;Ahn Tae-Chon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.221-226
    • /
    • 2006
  • In this paper, we study an approach to design a Fuzzy PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of traditional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. In order to solve the above problems, we adapt Fuzzy PI controller for the fire angle control of rectifier. The performance of the Fuzzy PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain factors of the Fuzzy PI controller by Genetic Algorithms. A comparative study has been performed between Fuzzy PI controller and traditional PI controller, to prove the superiority of the proposed scheme.

Advanced Railway Power Quality Detecting Algorithm Using a Combined TEO and STFT Method

  • Yoo, Je-Ho;Shin, Seung-Kwon;Park, Jong-young;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2442-2447
    • /
    • 2015
  • Because an electric railway vehicle is a large scale moving load, it can cause various kinds of power quality problems in the railroad power system. The power quality impacts are considered as the strong instantaneous stresses to the related power systems and can cause an accelerating aging and a malfunction of the power supplying components. Therefore, it is necessary to detect the small and intermittent symptoms mixed in the voltage waveform. However, they cannot be detected by the triggering functions of the existing power analyzers installed in the railway systems. This paper will examine the drawback of some fast detection tools and propose an advanced detecting and analyzing method based on a combined TEO and STFT algorithm.

Genetically optimized self-tuning Fuzzy-PI controller for HVDC system (HVDC 시스템을 위한 진화론적으로 최적화된 자기 동조 퍼지제어기)

  • Wang, Zhong-Xian;Yang, Jueng-Je;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.279-281
    • /
    • 2006
  • In this paper, we study an approach to design a self-tuning Fuzzy-PI controller in HVDC(High Voltage Direct Current) system. In the rectifier of conversional HVDC system, turning on, turning off, triggering and protections of thyristors have lots of problems that can make the dynamic instability and cannot damp the dynamic disturbance efficiently. The above problems are solved by adapting Fuzzy-PI controller for the fire angle control of rectifier.[7] The performance of the Fuzzy-PI controller is sensitive to the variety of scaling factors. The design procedure dwells on the use of evolutionary computing(Genetic Algorithms, GAs). Then we can obtain the optimal scaling factors of the Fuzzy-PI controller by Genetic Algorithms. In order to improve Fuzzy-PI controller, we adopt FIS to tune the scaling factors of the Fuzzy-PI controller on line. A comparative study has been performed between Fuzzy-PI and self-tuning Fuzzy-PI controller, to prove the superiority of the proposed scheme.

  • PDF

Observation of the Preionization effect and Operational Characteristics of a Nitrogen Laser by a Pulse type high Voltage Power Supply (펄스형 고전압 전원에 의한 선전리 현상의 관측과 질소레이저의 동작 특성)

  • Lee, Bong-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.60-67
    • /
    • 2006
  • We constructed a TEA $N_2$ laser which consists of spark gap, pulse type high voltage power supply, Blumlein transmission line circuit, laser tube with Ernst electrode. We observed the self-preionization with an optical fiber in the spark gap and laser tube. The higher voltage power supplied to the Blumlein transmission line circuit, the better preionization was. An U-type transformer yielded better stability and output power than an I-type transformer. The discharge time after triggering a spark gap for the U-type transformer was also short. We obtained the stability of $2.7\%$ and output power of $36{\mu}J$ when the optimum conditions of the laser operation were spark gap distance of 6.0 mm, electrode distance in laser tube of 5.0 mm, $N_2$ gas flow rate in spark gap of 1500 cc/min, $N_2$ gas flow rate in laser tube of 4 ${\iota}$/min, output window reflectivity of $40\%$ and repetition rate of 10 Hz.

Integrate-and-Fire Neuron Circuit and Synaptic Device using Floating Body MOSFET with Spike Timing-Dependent Plasticity

  • Kwon, Min-Woo;Kim, Hyungjin;Park, Jungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.658-663
    • /
    • 2015
  • In the previous work, we have proposed an integrate-and-fire neuron circuit and synaptic device based on the floating body MOSFET [1-3]. Integrate-and-Fire(I&F) neuron circuit emulates the biological neuron characteristics such as integration, threshold triggering, output generation, refractory period using floating body MOSFET. The synaptic device has short-term and long-term memory in a single silicon device. In this paper, we connect the neuron circuit and the synaptic device using current mirror circuit for summation of post synaptic pulses. We emulate spike-timing-dependent-plasticity (STDP) characteristics of the synapse using feedback voltage without controller or clock. Using memory device in the logic circuit, we can emulate biological synapse and neuron with a small number of devices.

High Current Behavior and Double Snapback Mechanism Analysis of Gate Grounded Extended Drain NMOS Device for ESD Protection Device Application of DDIC Chip (DDIC 칩의 정전기 보호 소자로 적용되는 GG_EDNMOS 소자의 고전류 특성 및 더블 스냅백 메커니즘 분석)

  • Yang, Jun-Won;Kim, Hyung-Ho;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2013
  • In this study, the high current behaviors and double snapback mechanism of gate grounded_extended drain n-type MOSFET(GG_EDNMOS) device were analyzed in order to realize the robust electrostatic discharge(ESD) protection performances of high voltage operating display driver IC(DDIC) chips. Both the transmission line pulse(TLP) data and the thermal incorporated 2-dimensional simulation analysis as a function of ion implant conditions demonstrate a characteristic double snapback phenomenon after triggering of bipolar junction transistor(BJT) operation. Also, the background carrier density is proven to be a critical factor to affect the high current behavior of the GG_EDNMOS devices.

A Study on DC Motor Speed Control for Building a Port Cargo Handling Equipment (항만하역장비용 직류전동기의 속도제어에 관한 연구)

  • Ahn, B.Y;Park, J.S.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.273-280
    • /
    • 1997
  • Recently the importance of the cargo handling equipments in a port has been increasing to get strong competition from other ports. Many ports are making efforts to modernize their cargo handling equipments. The kernel technology of such equipments is the speed control of DC motor which is used as an essential part of them. In this paper, we discuss the speed control of a DC motor as a basic work for building cargo handling equipments in a port. DC Motors are still widely used in industrial fields, as driving power motor for electrical fields. DC drives, being easy to control, are widely used in many variable-speed and position control drive system. Traditional analog control circuits used in such applications have many disadvantages. Complex control schemes are difficult to implement with analog components. All these factor and invention of the microprocessor has made it possible to use digital control circuits, using microprocessing system. These digital circuits have been found to be reliable, flexible, and also immune to noise. In this paper it presents the speed control of a SCR DC motor driver which using dual converter by 80c196kc microprocessor. We developed a thyristor power amplifier which does not cause damage thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was analyzed voltage and currents wave at reactive load.

  • PDF

Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization (Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jongil;Lee, Byungha;Bae, Youngseok;Koo, Insu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

An Integer-N PLL Frequency Synthesizer Design for The 900MHz UHF RFID Application (900MHz UHF대역 RFID 응용을 위한 Integer-N PLL주파수 합성기 설계)

  • Kim, Sin-Woong;Kim, Young-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.247-252
    • /
    • 2009
  • This paper presents an Integer-N phase-locked loop (PLL) frequency synthesizer using a novel prescaler based on a charge pump and clock triggering circuit. A quadrature VCO has been designed for the 900MHz UHF RFID application. In this circuit, a voltage-controlled oscillator(VCO), a novel Prescaler, phase frequency detector(PFD), charge pump(CP), and analog lock detector(ALD) have been integrated with 0.35-${\mu}m$CMOS process. The integer divider has been developed with a verilog-HDL module, and the PLL mixed mode simulation has been performed with Spectre-Verilog co-simulator. The sweep range of VCO is designed from 828 to 960 MHz and the VCO generates four phase quadrature signals. The simulation results show that the phase noise of VCO is -102dBc/Hz at 100 KHz offset frequency, and the maximum lock-in time is about 4us with 32MHz step change (from 896 to 928 MHz).

  • PDF