• Title/Summary/Keyword: trap density

Search Result 341, Processing Time 0.027 seconds

Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bay (II) - Mutual Variation between Inflowing Pollutant Loads and Water Quality - (영일만 유입오염부하량과 수질의 시${\cdot}$공간적 변동특성(II) - 유입오염부하량과 수질의 상호거동 -)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.32-38
    • /
    • 2003
  • This study investigates the distribution characteristics and relationship of water quality, and analyzes the spatial and temporal variation and distribution of the pollutant loads at Yeong-il Bay. The results of these analysis, the concentrations of nutrient loads (T-N and T-P), both appeared to be at the maximum value in November, while most small values were taken in May for the T-N, and in August for the T-P. For COD, the maximum concentration was in August, which has much precipitation during the same season, T-N was at the mean, and T-P was at the minimum value. Using the cluster analysis to develop the division of the sea basin by the dendrogram, before and after construction of Pohang New-port, the variation characteristics of water quality of Yeong-il Bay were discussed. The in flowing pollutant loads were transported to the landward by the high-density salinity water volume of the bottom layer therefore, it formed nutrient trap or coastal trapping areas of the pollutant load. By this mechanism, it is clear that the water volume with high-density nutrient exists on both sides of the Pohang New-port. Thus, the sea basins increasing concentration of the pollutant load at Yeong-il Bay are most prevalent at Hyeong-san estuary, the Pohang Old, and New-port. To improve water quality of this sea basin, the reduction of these nutrients loads should be the highest priority.

Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells (결정질 실리콘 태양전지 응용을 위한 SiNx 및 SiO2 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.41-45
    • /
    • 2014
  • We have investigated the passivation property of $SiN_x$ and $SiO_2$ thin films formed using various process conditions for the application of crystalline Si solar cells. An increase in the thickness of $SiN_x$ deposited using plasma enhanced chemical vapor deposition (PECVD) led to the improvement of passivation quality. This could be associated with the passivation of Si dangling bonds by hydrogen atoms which were supplied during PECVD deposition. The $SiO_2$ thin films grown using dry oxidation process exhibited better passivation behavior than those using wet oxidation process, implying the dry oxidation process was more effective in the formation of high quality $SiO_2$ thin films. The relative effective life time gradually decreased with increasing dry oxidation temperature. Such a degradation of passivation behavior could be attributed to the increase in interface trap density caused by thermal damages.

Eelctrical and Structural Properties of $CaF_2$Films ($CaF_2$ 박막의 전기적, 구조적 특성)

  • 김도영;최석원;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

A Study on the Characteristics of Si-$SiO_2$ interface in Short channel SONOSFET Nonvolatile Memories (Short channel SONOSFET 비휘발성 기억소자의 Si-$SiO_2$ 계면특성에 관한 연구)

  • Kim, Hwa-Mok;Yi, Sang-Bae;Seo, Kwang-Yell;Kang, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1268-1270
    • /
    • 1993
  • In this study, the characteristics of Si-$SiO_2$ interface and its degradation in short channel SONOSFET nonvolatile memory devices, fabricated by 1Mbit CMOS process($1.2{\mu}m$ design rule), with $65{\AA}$ blocking oxide layer, $205{\AA}$ nitride layer, and $30{\AA}$ tunneling oxide layer on the silicon wafer were investigated using the charge pumping method. For investigating the Si-$SiO_2$ interface characteristics before and after write/erase cycling, charge pumping current characteristics with frequencies, write/erase cycles, as a parameters, were measured. As a result, average Si-$SiO_2$ interface trap density and mean value of capture cross section were determined to be $1.203{\times}10^{11}cm^{-2}eV^{-1}\;and\;2.091{\times}10^{16}cm^2$ before write/erase cycling, respectively. After cycling, when the write/erase cycles are $10^4$, average $Si-SiO_2$ interface trap density was $1.901{\times}10^{11}cm^{-2}eV^{-1}$. Incresing write/erase cycles beyond about $10^4$, Si-$SiO_2$ interface characteristics with write/erase cycles was increased logarithmically.

  • PDF

Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface (4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과)

  • In kyu Kim;Jeong Hyun Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.

Electrical Characteristics of SiC MOSFET Utilizing Gate Oxide Formed by Si Deposition (Si 증착 이후 형성된 게이트 산화막을 이용한 SiC MOSFET의 전기적 특성)

  • Young-Hun Cho;Ye-Hwan Kang;Chang-Jun Park;Ji-Hyun Kim;Geon-Hee Lee;Sang-Mo Koo
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • In this study, we investigated the electrical characteristics of SiC MOSFETs by depositing Si and oxidizing it to form the gate oxide layer. A thin Si layer was deposited approximately 20 nm thick on top of the SiC epi layer, followed by oxidation to form a gate oxide layer of around 55 nm. We compared devices with gate oxide layers produced by oxidizing SiC in terms of interface trap density, on-resistance, and field-effect mobility. The fabricated devices achieved improved interface trap density (~8.18 × 1011 eV-1cm-2), field-effect mobility (27.7 cm2/V·s), and on-resistance (12.9 mΩ·cm2).

Charge trapping characteristics of high-k $HfO_2$ layer for tunnel barrier engineered nonvolatile memory application (엔지니어드 터널베리어 메모리 적용을 위한 $HfO_2$ 층의 전하 트랩핑 특성)

  • You, Hee-Wook;Kim, Min-Soo;Park, Goon-Ho;Oh, Se-Man;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.133-133
    • /
    • 2009
  • It is desirable to choose a high-k material having a large band offset with the tunneling oxide and a deep trapping level for use as the charge trapping layer to achieve high PIE (Programming/erasing) speeds and good reliability, respectively. In this paper, charge trapping and tunneling characteristics of high-k hafnium oxide ($HfO_2$) layer with various thicknesses were investigated for applications of tunnel barrier engineered nonvolatile memory. A critical thickness of $HfO_2$ layer for suppressing the charge trapping and enhancing the tunneling sensitivity of tunnel barrier were developed. Also, the charge trap centroid and charge trap density were extracted by constant current stress (CCS) method. As a result, the optimization of $HfO_2$ thickness considerably improved the performances of non-volatile memory(NVM).

  • PDF

Electronic Photodepletion Spectroscopy of Dibenzo-18-crown-6 with a Potassium Ion

  • Kim, Hwan-Jin;Shin, Won-Jik;Choi, Chang-Min;Lee, Jun-Ho;Kim, Nam-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1973-1976
    • /
    • 2008
  • Electronic photodepletion spectrum of dibenzo-18-crown-6 with a potassium ion ($K^+$-DB18C6) was obtained in the gas phase using electrospray ionization and quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectrum exhibited rather a broad absorption band at 36350 $cm^{-1}$, which was tentatively assigned as the origin of the S1 band. The photodepletion spectrum of $Cs^+$-DB18C6 was also obtained to elaborate the effects of metal cations on electronic and geometric structures of metal cation-DB18C6 complexes. We found that the S1 band of $Cs^+$-DB18C6 was red-shifted by 180 $cm^{-1}$ from that of $K^+$-DB18C6. With the results of quantum theoretical calculations using the density functional theory, we suggested that the red-shift arose mainly from weaker binding of $Cs^+$ to DB18C6 than that of K+, which resulted from a larger size of $Cs^+$ than that of the cavity in DB18C6.

High Density and Low Voltage Programmable Scaled SONOS Nonvolatile Memory for the Byte and Flash-Erased Type EEPROMs (플래시 및 바이트 소거형 EEPROM을 위한 고집적 저전압 Scaled SONOS 비휘발성 기억소자)

  • 김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.831-837
    • /
    • 2002
  • Scaled SONOS transistors have been fabricated by 0.35$\mu\textrm{m}$ CMOS standard logic process. The thickness of stacked ONO(blocking oxide, memory nitride, tunnel oxide) gate insulators measured by TEM are 2.5 nm, 4.0 nm and 2.4 nm, respectively. The SONOS memories have shown low programming voltages of ${\pm}$8.5 V and long-term retention of 10-year Even after 2 ${\times}$ 10$\^$5/ program/erase cycles, the leakage current of unselected transistor in the erased state was low enough that there was no error in read operation and we could distinguish the programmed state from the erased states precisely The tight distribution of the threshold voltages in the programmed and the erased states could remove complex verifying process caused by over-erase in floating gate flash memory, which is one of the main advantages of the charge-trap type devices. A single power supply operation of 3 V and a high endurance of 1${\times}$10$\^$6/ cycles can be realized by the programming method for a flash-erased type EEPROM.

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors (활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화)

  • Baek, Chan-Soo;Lim, Kee-Joe;Lim, Dong-Hyeok;Kim, Hyun-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.