Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2014.24.1.041

Passivation properties of SiNx and SiO2 thin films for the application of crystalline Si solar cells  

Jeong, Myung-Il (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University)
Abstract
We have investigated the passivation property of $SiN_x$ and $SiO_2$ thin films formed using various process conditions for the application of crystalline Si solar cells. An increase in the thickness of $SiN_x$ deposited using plasma enhanced chemical vapor deposition (PECVD) led to the improvement of passivation quality. This could be associated with the passivation of Si dangling bonds by hydrogen atoms which were supplied during PECVD deposition. The $SiO_2$ thin films grown using dry oxidation process exhibited better passivation behavior than those using wet oxidation process, implying the dry oxidation process was more effective in the formation of high quality $SiO_2$ thin films. The relative effective life time gradually decreased with increasing dry oxidation temperature. Such a degradation of passivation behavior could be attributed to the increase in interface trap density caused by thermal damages.
Keywords
$SiN_x$; $SiO_2$; Passivation; Crystalline Si solar cells; Interface trap density;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A.W. Blakers and M.A. Green, "20 % efficiency silicon solar cells", Appl. Phys. Lett. 48 (1986) 215.   DOI   ScienceOn
2 H.C. Jung, Y.K. Paek, H.H. Kim, J.H. Eum, K. Choi, H.-T. Kim and H.S. Chang, "Formation of lotus surface structure for high efficiency silicon solar cell", J. Korean Cryst. Growth Cryst. Technol. 20 (2010) 7.   과학기술학회마을   DOI   ScienceOn
3 K.-H. Lee, "A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application", J. Korean Cryst. Growth Cryst. Technol. 21 (2011) 225.   과학기술학회마을   DOI   ScienceOn
4 M.A Green, J. Zhao, A. Wang and S.R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 9.   DOI   ScienceOn
5 P.A. Basore, "Numerical modeling of textured silicon solar cells using PC-1D", IEEE Trans. Electron Devices 37[2] (1990) 337.   DOI
6 R. Hezel and R. Scho Krner, "Plasma Si nitride-A promising dielectric to achieve high-quality silicon", J. Appl. Phys. 52 (1981) 3076.   DOI
7 Fred W. Sexton, "Plasma nitride AR coatings for silicon solar cells", Solar Energy Mater. 7 (1982) 1.   DOI
8 J. Zhao, A. Wang and M. A. Green, "24.5 % efficiency silicon PERT cells on MCZ substrates and 24.7 % efficiency PERL cells on FZ substrates", Prog. Photovoltatics 7 (1999) 471.   DOI
9 R. Hezel and K. Jaeger, "Low-temperature surface passivation of silicon for solar cells", J. Electrochem. Soc. 136 (1989) 518.   DOI   ScienceOn
10 Armin G. Aberle and Rudolf Hezel, "Progress in lowtemperature surface passivation of silicon solar cells using remote-plasma silicon nitride", Prog. Photovoltaics 5 (1997) 29.   DOI
11 P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu and S.W. Glunz, "High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide", IEEE Electron Device Lett. 31 (2010) 695.   DOI
12 I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx : H films", Appl. Phys. Lett. 79 (2001) 2199.   DOI
13 C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-d. Yang, M. Chang and H.-s. Hwang, "Effects of high-pressure hydrogen postannealing on the electrical and structural properties of the Pt-Er alloy metal gate on $HfO_2$ film", Electrochem. Solid State Lett. 9 (2006) G228.   DOI   ScienceOn
14 Armin G. Aberle, "Surface passivation of crystalline silicon solar cells: a review", Prog. Photovoltatics 8 (2000) 473.   DOI
15 Armin G. Aberle, "Overview on SiN surface passivation of crystalline silicon solar cells", Sol. Energy Mater. Sol. Cells 65 (2001) 239.   DOI
16 Sara Olibet, Evelyne Vallat-Sauvain and Christophe Ballif, "Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds", Phys. Rev. B 76 (2007) 035326.   DOI
17 H. Yang, Y. Son, S. Choi and H. Hwang, "Improved conductance method for determining interface trap density of metal-oxide-semiconductor device with high series resistance", Jpn. J. Appl. Phys. 44 (2005) L1460.   DOI
18 Dieter K. Schroder and Jeff A. Babcock, "Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing", J. Appl. Phys. 94 (2003) 1.   DOI   ScienceOn
19 J.F. Zhang, C. Z. Zhao, G. Groeseneken, R. Degreave, J.N. Ellis and C.D. Beech, "Hydrogen induced positive charge generation in gate oxides", J. Appl. Phys. 90 (2001) 1911.   DOI