• Title/Summary/Keyword: transport equation

Search Result 767, Processing Time 0.023 seconds

COMPUTATIONAL EFFICIENCY OF A MODIFIED SCATTERING KERNEL FOR FULL-COUPLED PHOTON-ELECTRON TRANSPORT PARALLEL COMPUTING WITH UNSTRUCTURED TETRAHEDRAL MESHES

  • Kim, Jong Woon;Hong, Ser Gi;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.263-272
    • /
    • 2014
  • Scattering source calculations using conventional spherical harmonic expansion may require lots of computation time to treat full-coupled three-dimensional photon-electron transport in a highly anisotropic scattering medium where their scattering cross sections should be expanded with very high order (e.g., $P_7$ or higher) Legendre expansions. In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17~42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.

Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation (이안 구조물 건설에 따른 해안선의 변화와 수치계산)

  • 신승호
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Analysis of Channel Doping Concentration Dependent Subthreshold Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑농도에 따른 문턱전압이하 특성 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1840-1844
    • /
    • 2008
  • In this paper, the influence of channel doping concentration, which the most important factor is as double gate MOSFET is fabricated, on transport characteristics has been analyzed in the subthreshold region. The analytical model is used to derive transport model based on Poisson equation. The thermionic omission and tunneling current to have an influence on subthreshold current conduction are analyzed, and the relationship of doping concentration and subthreshold swings of this paper are compared with those of Medici two dimensional simulation, to verify this model. As a result, transport model presented in this paper is good agreement with two dimensional simulation model, and the transport characteristics have been considered according to the dimensional parameters of double gate MOSFET.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

- Numerical Solutions for the Flow past a Cylinder- (원주주위를 지나는 흐름에 관한 수치해석)

  • 조용식;윤태훈
    • Water for future
    • /
    • v.31 no.4
    • /
    • pp.291-297
    • /
    • 1998
  • The two dimensional time dependent flow past a circular cylinder is analyzed numerically. In the analysis, equations of conservation of mass and momentum are transformed to equations of stream function-vorticity and vorticity transport, and nondimensionalized by nondimensional parameters representing flow characteristics, The resulting stream function-vorticity equation and vorticity transport equation are solved by successive over relaxation scheme and alternating direct implicit scheme. Numerical experiments are performed for the flow in the range of Reynolds number 125 to 275. The time dependent streamlines, vorticities, pressure on cylinder surface, separation angle, and drag and lift coefficients are calculated, and the method for estimation of pressure on cylinder surface and the outer boundary limit are developed.

  • PDF

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas ($SF_6-Ar$-혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1102-1105
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, Electrons Drift Velocities for a rang of E/N values. As a consequence, it was known that the spatial growth rates and the dielectric behaviors in $SF_6$-Ar mixtures are strongly dependent on the addition rate of $SF_6$ gas but the transport coefficients of electrons are insensitive to the addition rate of $SF_6$ gas. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF