• Title/Summary/Keyword: transmission power

Search Result 5,780, Processing Time 0.029 seconds

Performance Evaluation of a Pilot Interference Cancellation Scheme in a WCDMA Wireless Repeater (WCDMA 무선 중계기에서 파일럿 간섭제거 기법의 성능평가)

  • Kim, Sun-Ho;Shim, Hee-Sung;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.111-117
    • /
    • 2009
  • In the wideband code division access (WCDMA) systems, a pilot channel is used to determine WCDMA network coverage, cell identification, synchronization, timing acquisition and tracking, user-set handoff, channel estimation, and so on. A wireless repeater, which is deployed in the urban area for the WCDMA system to meet the growing demand on wireless communication services, has the possibility to receive several pilot signals from a large number of base stations, however, cannot distinguish its service base station's signal among them. This pilot interference results in frequent handoffs in the user equipment, which degrades the radio reception, transmission efficiency, quality of service, and channel capacity and increases the unwanted power consumption. In this paper, thus, we propose a pilot pollution interference cancellation scheme using one of the adaptive estimation algorithms, normalized least mean square (NLMS), which is applicable to a wireless repeater. We carried out link-level and network-level computer simulations to evaluate the performance of the proposed scheme in a wireless repeater. The simulation results verify the bit error rate (BER) improvement in the link level and the call drop probability improvement in the network level.

Media Access Control Protocol Considering MANET of Underwater Environment (수중 환경의 MANET을 고려한 매체 접근 제어 프로토콜)

  • Shin, Seung-Won;Yun, Nam-Yeol;Lee, Jin-Young;Lee, Seung-Joo;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.97-107
    • /
    • 2013
  • Underwater wireless communication systems can be useful for underwater environment observation, catastrophe prevention, ocean resources exploration, ocean organism research, vessel sinking exploration, and so on. However, unlike terrestrial wireless communication, underwater wireless communication should consider factors such as long propagation delay, limited transmission capacity, high bit-error rate due to potential loss in power, ambient noise, man-made noise, multi-path, etc., because of the inherent characteristics of water. Thus, in this paper, we propose a suitable media access control(MAC) protocol that applies a combination of the ALOHA MAC protocol and the CSMA/CA MAC protocol to underwater environment. We further propose a mathematical analysis model to evaluate performance. We also verify performance improvement in the proposed scheme in comparison with existing MAC protocols.

A Study on Performance Improvement of Detecting Current of the Norton Amplifier (노튼 증폭기의 전류검출성능 개선에 관한 연구)

  • Kwon, Sung-Yeol;Lee, Hyun-Chang;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.185-191
    • /
    • 2018
  • In this paper, an improved Norton amplifier is proposed and the problems caused by the current input in the Norton amplifier, which has advantages in current transmission, are analyzed. The output of the voltage follower consisting of an operational-amplifier with constant output voltage characteristics is used as an input terminal of the proposed circuit. It is configured to detect the power supply current passing through the voltage follower and extract the current from the input terminal. The performance of the improved Norton amplifier is verified at experiment according to the input current. The results are compared with conventional Norton amplifier. Consequently, the input offset voltage, which is a problem in the conventional Norton amplifier, was removed in the proposed circuit. In addition, the average error of the output voltage with respect to the input current was reduced to 4.755%. It is verified that the characteristics of the proposed circuit are improved.

Analysis and Performance Improvement of Integrated E1 Pulse Generator for EMP Protection Performance Test (EMP 방호성능 시험용 통합형 E1 펄스 발생장치 분석 및 성능 개선)

  • Kim, Young-Jin;Kang, Ho-jae;Jeong, Young-Kyung;Youn, Dong-Gi;Park, Yong Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.415-423
    • /
    • 2018
  • We herein investigate the E1 pulse for evaluating the conducted performance of transmission lines connected to the electromagnetic pulse protection facilities against a conducted high-altitude electromagnetic pulse threat exposed to an external electromagnetic environment. The existing E1 pulse generator uses the Marx generator high-voltage step-up method; however, in this research, we used the Tesla transformer method to easily change the broadband output voltage(30 to 350 kV). We also analyzed the controller, power supply, high-voltage booster, and pulse-shaping device. The E1 pulse performance using the Tesla transformer was predicted through simulations and validated by measurements.

Study on Multibeam Forming with Improved Accuracy of Steering Angle and Sidelobe Control (높은 조향 정확도 및 부엽 제어가 가능한 다중 빔 형성 연구)

  • Chi, Sang Wook;Lee, Chang-Hyun;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.449-456
    • /
    • 2018
  • Herein, several multibeam forming methods that can be applied to microwave wireless power transmission are presented. Because the conventional multibeam forming methods do not consider an active element pattern(AEP), an intended beam shape will contain a steering angle error when applied to an actual system. To solve this problem, a method of considering the average of the AEP and a method of considering all the AEPs by the modified Fourier series method have been proposed. We confirmed that the proposed method reduces the error with the intended beam shape in the multibeam formation. In addition, for the side lobe level(SLL) and null control, a method of multibeam forming by applying the superposition principle to the Dolph-Tschebyscheff method is proposed. We also confirmed that SLL control can be simultaneously achieved with the multibeam formation.

E-Band Bond-Wire Modeling and Matching Network Design (E-대역 본드와이어 모델링 및 정합회로 설계)

  • Kim, Kimok;Kang, Hyunuk;Lee, Wooseok;Choi, Doohun;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.401-406
    • /
    • 2018
  • In this paper, we present E-band bond-wire modeling and a matching network to compensate for the effect of the bond-wire. The impedance of the bond-wires is extracted using three-dimensional electromagnetic simulation. The matching network was designed using a simple structure. The implemented matching network was verified with a commercial 71~81 GHz LNA IC and an interconnection based on the WR-12 waveguide. The matching network increases the transmission coefficient of the system by up to 4.5 dB, power gain by up to 3.12 dB, $P_{1dB}$ by up to 2.2 dB, and improves the gain flatness by ${\pm}1.07dB$.

Effect of Porcelain/Polymer Interface on the Microstructure, Insulation Characteristics and Electrical Field Distribution of Hybrid Insulators (자기재/폴리머 계면이 하이브리드 애자의 미세구조, 절연특성과 전계분포에 미치는 영향)

  • Cho, Jun-Young;Kim, Woo-Seok;An, Ho-Sung;An, Hee-Sung;Kim, Tae-wan;Lim, Yun-Seog;Bae, Sung-Hwan;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.558-565
    • /
    • 2017
  • Hybrid insulators that have the advantages of both porcelain (high mechanical strength and chemical stability) as well as polymer (light weight and high resistance to pollution) insulators, can be used in place of individual porcelain and polymer insulators that are used for both mechanical support as well as electrical insulation of overhead power transmission lines. The most significant feature of hybrid insulators is the presence of porcelain/polymer interfaces where the porcelain and polymer are physically bonded. Individual porcelain and polymer insulators do not have such porcelain/polymer interfaces. Although the interface is expected to affect the mechanical/electrical properties of the hybrid insulator, systematic studies of the adhesion properties at the porcelain/polymer interface and the effect of the interface on the insulation characteristics and electric field distribution of the hybrid insulator have not been reported. In this study, we fabricated small hybrid insulator specimens with various types of interfaces and investigated the effect of the porcelain/polymer interface on the microstructure, insulating characteristics, and electric field distribution of the hybrid insulators. It was observed that the porcelain/polymer interface of the hybrid insulator does not have a significant effect on the insulating characteristics and electric field distribution, and the hybrid insulator can exhibit electrical insulating properties that are similar or superior to those of individual porcelain and polymer insulators.

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

Energy-Efficient Voice Data Broadcast Method in Wireless Personal Area Networks for IoT (IoT-WPAN 환경에서 에너지 효율적 음성 데이터 Broadcast 기법)

  • Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2178-2187
    • /
    • 2015
  • Bluetooth Low Energy (Bluetooth LE) is a representative break-through communication technology for wireless personal area networks on nowaday. In this environment, most of significant performance should be aiming to energy efficiency due to the policy for manufacturing light-weighted communication devices derived from requirement of world IoT market, and many researches have been developed to satisfy this requirement. While Bluetooth LE has been leading the low power communication technology required from the current market by employing duty cycle and frequency hopping approaches, it couldn't address the problem of reliability on broadcast transmissions. The main goal of this paper is aiming to addressing this problem by suggesting a new method. Furthermore analytic evaluations would also be proceeded to find objective results in the view point of broadcast transmission efficiency from Master device.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.