Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.9.558

Effect of Porcelain/Polymer Interface on the Microstructure, Insulation Characteristics and Electrical Field Distribution of Hybrid Insulators  

Cho, Jun-Young (Department of Materials Science and Engineering, Seoul National University)
Kim, Woo-Seok (Department of Energy and Electrical Engineering, Korea Polytechnic University)
An, Ho-Sung (KEPCO Research Institute)
An, Hee-Sung (KEPCO Research Institute)
Kim, Tae-wan (KEPCO Research Institute)
Lim, Yun-Seog (KEPCO Research Institute)
Bae, Sung-Hwan (Department of Nano Science and Engineering, Kyungnam University)
Park, Chan (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.9, 2017 , pp. 558-565 More about this Journal
Abstract
Hybrid insulators that have the advantages of both porcelain (high mechanical strength and chemical stability) as well as polymer (light weight and high resistance to pollution) insulators, can be used in place of individual porcelain and polymer insulators that are used for both mechanical support as well as electrical insulation of overhead power transmission lines. The most significant feature of hybrid insulators is the presence of porcelain/polymer interfaces where the porcelain and polymer are physically bonded. Individual porcelain and polymer insulators do not have such porcelain/polymer interfaces. Although the interface is expected to affect the mechanical/electrical properties of the hybrid insulator, systematic studies of the adhesion properties at the porcelain/polymer interface and the effect of the interface on the insulation characteristics and electric field distribution of the hybrid insulator have not been reported. In this study, we fabricated small hybrid insulator specimens with various types of interfaces and investigated the effect of the porcelain/polymer interface on the microstructure, insulating characteristics, and electric field distribution of the hybrid insulators. It was observed that the porcelain/polymer interface of the hybrid insulator does not have a significant effect on the insulating characteristics and electric field distribution, and the hybrid insulator can exhibit electrical insulating properties that are similar or superior to those of individual porcelain and polymer insulators.
Keywords
Hybrid insulator; Insulator; Interface microstructure; Electric field analysis; Insulating characteristics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chandrasekar, C. Kalaivanan, A. Cavallini, and G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul., 16, 574 (2009). [DOI: http://dx.doi.org/10.1109/TDEI.2009.4815193]   DOI
2 A. Rawat and R. S. Gorur, IEEE Trans. Dielectr. Electr. Insul., 16, 107 (2009). [DOI: http://dx.doi.org/10.1109/TDEI.2009.4784557]   DOI
3 S. M. Rowland, J. Robertson, Y. Xiong, and R. J. Day, IEEE Trans. Dielectr. Electr. Insul., 17, 375 (2010). [DOI: http://dx.doi.org/10.1109/TDEI.2010.5448091]   DOI
4 E. A. Cherney, A. C. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. G. Powell, and G. A. Stewart, IEEE Trans. Power Del., 29, 275 (2014). [DOI: http://dx.doi.org/10.1109/TPWRD.2013.2288776]
5 E. Cherney, A. Baker, B. Freimark, R. Gorur, Z. Lodi, M. Marzinotto, I. Ramirez-Vazquez, and G. Stewart, IEEE Trans. Power Del., 30, 1145 (2015). [DOI: http://dx.doi.org/10.1109/TPWRD.2014.2369457]   DOI
6 Electrical Strength of Insulating Materials-Test Methods-Part 1: Test at Power Frequencies, IEC 60243-1, 53 (2013).
7 J. Looms, Insulators for High Voltages (Peter Pergrinus Ltd., London, 1988).
8 H. M. Schneider, J. F. Hall, G. Karady, and J. Renowden, IEEE Trans. Power Del., 4, 2214 (1989). [DOI: http://dx.doi.org/10.1109/61.35649]   DOI
9 J. Mackevich and M. Shah, IEEE Electr. Insul. Magazine, 13, 5 (1997). [DOI: http://dx.doi.org/10.1109/57.591510]   DOI
10 J. F. Hall, IEEE Trans. Power Del., 8, 376 (1993). [DOI: http://dx.doi.org/10.1109/61.180359]
11 S. C. Kim and T. Y. Kim, Proceedings of KIEE, 48, 22 (1999).
12 J. H. Lee, B. S. Lee, J. B. Lee, and T. H. Kwon, Bulletin of the Korean Inst. Electr. Electron. Mater. Eng., 17, 14 (2004).
13 X. Jiang, J. Yuan, L. Shu, Z. Zhang, J. Hu, and F. Mao, IEEE Trans. Power Del., 23, 1183 (2008) [DOI: http://dx.doi.org/10.1109/TPWRD.2007.908779]   DOI
14 J.S.T. Looms, IEEE Electr. Insul. Magazine, 4, 11 (1988). [DOI: http://dx.doi.org/10.1109/57.7985]
15 M. G. Mardika, T. A. Puri, Suwarno, M. Walch, U. Schichler, and G. Godel, Pro. 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) (IEEE, Chiang Mai, Thailand, 2015) p. 394. [DOI: http://dx.doi.org/10.1109/ICITEED.2015.7408978]
16 G. Goedel, M. Muhr, J. M. George, and K. Pointner, Elektrotech. Inftech., 134, 53 (2017). [DOI: http://dx.doi.org/10.1007/s00502-016-0451-5]   DOI
17 Y. Xiong, S. M. Rowland, J. Robertson, and R. J. Day, IEEE Trans. Dielectr. Electr. Insul., 15, 763 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4543114]   DOI
18 A. P. Mishra, R. S. Gorur, and S. Venkataraman, IEEE Trans. Dielectr. Electr. Insul., 15, 467 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4483466]   DOI