• Title/Summary/Keyword: transformation temperature

Search Result 1,017, Processing Time 0.026 seconds

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals (단결정 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 의 상전이에 미치는 전장의 영향)

  • Lee, Eun-Gu
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.329-333
    • /
    • 2013
  • The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.

Transformation for 1,3-Dichloropene of Soil Fumigant in Water and Soil (토양 훈증제 1,3-Dichloropene의 물 및 토양 중 분해)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1463-1468
    • /
    • 2007
  • Emission of methyl bromide(MeBr) of soil fumigant was implicated in stratospheric ozone depletion. To determine the environmental fate for 1,3-dichloropene(1,3-D) of alternatives fumigants for MeBr, this paper researched the transformation for 1,3-D in water and soil. Half lives of cis-1,3-D in water with first-order kinetics are 9.9day and 1.7day at $25^{\circ}C\;and\;40^{\circ}C$, half lives of trans-1,3-D are 8.6day and 1.5day at $25^{\circ}C\;and\;40^{\circ}C$, respectively. Transformation for 1,3-D in water at high temperature faster then at low temperature. Hydrolysis for 1,3-D in water are unaffected at $pH\;2.5{\sim}pH\;10.0$, but hydrolysis for 1,3-D at pH 11.5 higher then at $pH\;2.5{\sim}pH\;10.0$. Half lives of cis-1,3-D in soil are 11.5day and 7.7day at 3% and 10% of soil moisture, half lives of trans-1,3-D are 9.9day and 6.9day at 3% and 10% of soil moisture, respectively. Transformation for 1,3-D in water increased with increasing soil moisture. Transformation for trans-1,3-D isomer are more rapid then cis-1,3-D isomer in water and soil. This research has identified that transformation for 1,3-dichloropropene are affected by temperature, pH, soil moisture, and isomer of cis and trans in water and soil.

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng

  • Xu, Xin-Fang;Gao, Yan;Xu, Shu-Ya;Liu, Huan;Xue, Xue;Zhang, Ying;Zhang, Hui;Liu, Meng-Nan;Xiong, Hui;Lin, Rui-Chao;Li, Xiang-Ri
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • Background: Temperature is an essential condition in red ginseng processing. The pharmacological activities of red ginseng under different steam temperatures are significantly different. Methods: In this study, an ultrahigh-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry was developed to distinguish the red ginseng products that were steamed at high and low temperatures. Multivariate statistical analyses such as principal component analysis and supervised orthogonal partial least squared discrimination analysis were used to determine the influential components of the different samples. Results: The results showed that different steamed red ginseng samples can be identified, and the characteristic components were 20-gluco-ginsenoside Rf, ginsenoside Re, ginsenoside Rg1, and malonyl-ginsenoside Rb1 in red ginseng steamed at low temperature. Meanwhile, the characteristic components in red ginseng steamed at high temperature were 20R-ginsenoside Rs3 and ginsenoside Rs4. Polar ginsenosides were abundant in red ginseng steamed at low temperature, whereas higher levels of less polar ginsenosides were detected in red ginseng steamed at high temperature. Conclusion: This study makes the first time that differences between red ginseng steamed under different temperatures and their ginsenosides transformation have been observed systematically at the chemistry level. The results suggested that the identified chemical markers can be used to illustrate the transformation of ginsenosides in red ginseng processing.

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella

  • Liang, Fang;Du, Kui;Wen, Xiaobin;Luo, Liming;Geng, Yahong;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2015
  • To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m2/s; temperature: 30℃ pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R2 = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

A Study on Analysis of Heat Transfer and Residual Stress on the Weld Zone using FEM (유한요소법을 이용한 용접부의 열전달 및 잔류응력 해석에 관한 연구)

  • 김일수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.96-104
    • /
    • 2000
  • This paper represents to develop a computer software system which is capable to analyze the phase transformation of high strength steel(BV-AH32) and to predict heat transfer and welding residual stress due to phase transformation during Gas Metal Arc(GMA) welding. The developed model was considered temperature dependent properties such as young's modules, coefficient of thermal expansion and yield stress as well as the double ellipsoidal heat distribution by the moving arc. From the results, it was found that the longitudinal and transverse residual stresses calculated by the coupled analysis of heat transfer, residual stress and phase transformation showed good agreement with the experimental data. In addition, the temperature distribution as well as longitudinal and transverse residual stresses of weldment by the 1-pass and 2-pass of welding were also determined.

  • PDF

The Influence of Polytypism and Impurities on the Phase Transformation of Kaolins : I. Kaolinite and Dickite (다구조형의 차이와 불순물이 카올린광물의 상전이에 미치는 영향: I.카올리나이트와 딕카이트)

  • 이수정
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.399-409
    • /
    • 1999
  • Mullitization of kaolinite and dickite was examined with special attention to the influence of polytypism and impurities on the phase transformation. The phase transformation sequence in dickite is identical with that in kaolinite except that cristobalite is crystallized at $50^{\circ}C$ higher temperature in dickite. Difference in phase transformation above $1000^{\circ}C$ in kaolin minerals is attributed to the different crystal structures of metadickite and metakaolinite on the effect of impurities. A part of quartz is transformaed into cristobalite. Spinel-type phase produced in disordered kaolins including illite occurs over a short range of temperatures. Primary mullite is transformed into orthorhombic mullite at higher temperature as well. These results sustain the idea that disintegration of methkaolin and the spinel-type phase supplies extra sillica and promotes the growth of mullite cristobalite.

  • PDF