Browse > Article
http://dx.doi.org/10.1007/s12540-018-0139-y

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel  

Tian, Junyu (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology)
Xu, Guang (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology)
Jiang, Zhengyi (School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong)
Hu, Haijiang (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology)
Zhou, Mingxing (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1202-1212 More about this Journal
Abstract
The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.
Keywords
Nickle; Bainite transformation; Austempering process; Tranformation time; Property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L.X. Li, L.Y. Zheng, B. Ye, Z.Q. Tong, Met. Meter. Int. 24, 60 (2018)   DOI
2 C. Garcia-mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 285 (2003)
3 F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18, 279 (2002)   DOI
4 J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7, 40 (2017)   DOI
5 E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Weld. J. 85, 200 (2006)
6 E. Keehan, H.O. Andren, L. Karlsson, M. Murugananth, H.K.D.H. Bhadeshia, in 6th International Conference on Trends in Welding Research, ed. by S.A. David, T. DebRoy, J.C. Lippold (ASM International, Phoenix, 2002), p. 695
7 J.A. Omotoyinbo, O.O. Oluwole, Mater. Des. 30, 335 (2009)   DOI
8 S. Zhang, P. Wang, D. Li, Y. Li, Mater. Des. 84, 385 (2015)   DOI
9 Y.L. Chen, C.Z. Dong, Q.W. Cai, D.C. Wan, L. Li, Y. Qi, J. Mater. Eng. 3, 16 (2013)
10 X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594, 344 (2014)   DOI
11 F. Hu, K.M. Wu, H. Zheng, Steel Res. Int. 84, 1060 (2013)
12 J. Kobayashi, D. Ina, N. Yoshikawa, S. Koh-Ichi, ISIJ Int. 52, 1894 (2012)   DOI
13 L.C. Chang, Metall. Mater. Trans. A 30, 909 (1999)
14 L.H. Qian, Q. Zhou, F.C. Zhang, J.Y. Meng, M. Zhang, Y. Tian, Mater. Des. 39, 264 (2012)   DOI
15 M.X. Zhou, G. Xu, L. Wang, H.J. Hu, Trans. Indian Inst. Met. 69, 693 (2016)   DOI
16 S. Baradari, M.A. Boutorabi, Mater. Des. 86, 603 (2015)   DOI
17 H.J. Hu, G. Xu, M.X. Zhou, Q. Yuan, Metals 6, 173 (2016)   DOI
18 M.X. Zhou, G. Xu, J.Y. Tian, H.J. Hu, Q. Yuan, Metals 7, 263 (2017)   DOI
19 J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2018). https://doi.org/10.1002/srin.20170 0469
20 M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Steel Res. Int. (2016). https ://doi.org/10.1002/srin.20160 0377   DOI
21 C. Garcia-Mateo, M. Peet, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 814 (2014)
22 B. Ozturk, V.L. Fearing, J.A. Ruth, G. Simkovich, Solid State Ionics 12, 145 (1984)   DOI
23 C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527, 3442 (2010)   DOI
24 D. Quidort, Y. Brechet, Scripta Mater. 47, 151 (2002)   DOI
25 J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, H.J. Hu, Trans. Indian Inst. Met. 71, 185 (2018)   DOI
26 H.J. Hu, G. Xu, L. Wang, M.X. Zhou, Z.L. Xue, Met. Mater. Int. 21, 929 (2015)   DOI
27 C. Garcia-Mateo, F.G. Caballero, Mater. Trans. 46, 1839 (2005)   DOI
28 B.C.D. Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)   DOI
29 M. Pozuelo, J.E. Wittig, J.A. Jiménez, G. Frommeyer, Metal. Mater. Trans. A 40, 1826 (2009)   DOI
30 G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee, J. Alloys Compd. 705, 817 (2017)   DOI
31 J. Zhao, J.M. Li, H.H. Ji, T.S. Wang, Materials 10, 874 (2017)   DOI
32 F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004)   DOI