Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.6.329

Effect of Electrical Field on the Phase Transformation of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Single Crystals  

Lee, Eun-Gu (Department of Advanced Materials Engineering, Chosun University)
Publication Information
Korean Journal of Materials Research / v.23, no.6, 2013 , pp. 329-333 More about this Journal
Abstract
The structural phase transformations of $0.7Pb(Mg_{1/3}Nb_{2/3})O_3-0.3PbTiO_3$ (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)${\rightarrow}$tetragonal (T)${\rightarrow}$rhombohedral (R) phase was observed in zero-field-cooled conditions; and a $C{\rightarrow}T{\rightarrow}$monoclinic $(M_C){\rightarrow}$ monoclinic ($M_A$) phase was observed in the field-cooled conditions. The transformation of T to $M_A$ phase was realized through an intermediate $M_C$ phase. The results also represent conclusive and direct evidence of a $M_C$ to $M_A$ phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a $R{\rightarrow}M_A{\rightarrow}M_C{\rightarrow}T$ phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the $M_A$ phase was stable at room temperature. With increasing the field, the transformation temperature from T to $M_C$ and from $M_C$ to $M_A$ phase decreased, and the phase stability ranges of both T and $M_C$ phases increased. Upon removal of the field, the phase transformation from R to $M_A$ phase was irreversible, but from $M_A$ to $M_C$ was reversible, which means that $M_A$ is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.
Keywords
ferroelectric; phase transformations; monoclinic; domain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Noheda, D. E. Cox, Shirane, J. Gao and Z. Ye, Phys. Rev. B, 66, 054104 (2002).   DOI   ScienceOn
2 Z. Ye, B. Noheda, M. Dong, D. Cox and G. Shirane, Phys. Rev. B, 64, 184114 (2001).   DOI   ScienceOn
3 D. La-Orauttapong, B. Noheda, Z. G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox and G. Shirane, Phys. Rev. B, 65, 144101 (2002).   DOI   ScienceOn
4 Z. Feng, X. Zhao and H. Luo, Mater. Res. Bull., 41, 1133 (2006).   DOI   ScienceOn
5 M. Sulc, J. Tryzna and M. Pokorny, J. Electroceram. 19, 443 (2007).   DOI
6 Y. Chen, K. H. Lam, D. Zhou, X. S. Gao, J. Y. Dai, H. S. Luo and H. L. W. Chan, J. Appl. Phys., 109, 014111 (2011).   DOI   ScienceOn
7 A. K. Singh and D. Pandey, Ferroelectrics, 326, 91 (2005).   DOI   ScienceOn
8 E. G. Lee and J. Lee, Kor. J. Mater. Res. 22, 342 (2012).   DOI   ScienceOn
9 Z. Xu, X. Tan, P. Han and J. Shang, Appl. Phys. Lett., 76, 3732 (2000).   DOI   ScienceOn
10 A. K. Singh and D. Pandey, Phys. Rev. B, 67, 064102 (2003).   DOI   ScienceOn
11 H. Cao, F. Bai, N. Wang, J. Li, D. Viehland, G. Xu and G. Shirane, Phys. Rev. B, 72, 064104 (2005).   DOI   ScienceOn
12 J. Yao, H. Cao, W. Ge, J. Li and D. Viehland, Appl. Phys. Lett., 95, 052905 (2009).   DOI   ScienceOn
13 S-E. Park and T. Shrout, J. Appl. Phys., 82, 1804 (1997).   DOI   ScienceOn
14 R. Guo, L.E. Cross, S-E. Park, B. Noheda, D.E. Cox, and G. Shirane, Phys. Rev. Lett., 84, 5423 (2000).   DOI   ScienceOn
15 D. E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro and Y. Yamada, Appl. Phys. Lett., 79, 400 (2001).   DOI   ScienceOn
16 B. Noheda, D. E. Cox, G. Shirane, S-E. Park, L. E. Cross, and Z. Zhong, Phy. Rev. Lett., 86, 3891 (2001).   DOI   ScienceOn
17 S. Park and T.R. Shrout, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Contr., 44, 1140 (1997).   DOI   ScienceOn
18 K. Ohwada, K. Hirota, P. Rehrig, Y. Fujii and G. Shirane, Phys. Rev. B, 67, 094111 (2003).   DOI   ScienceOn