DOI QR코드

DOI QR Code

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology) ;
  • Xu, Guang (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology) ;
  • Jiang, Zhengyi (School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong) ;
  • Hu, Haijiang (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology) ;
  • Zhou, Mingxing (The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology)
  • Received : 2018.02.20
  • Accepted : 2018.04.29
  • Published : 2018.11.20

Abstract

The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251 (2004) https://doi.org/10.1016/j.cossms.2004.09.005
  2. J. Zhao, J.M. Li, H.H. Ji, T.S. Wang, Materials 10, 874 (2017) https://doi.org/10.3390/ma10080874
  3. L.X. Li, L.Y. Zheng, B. Ye, Z.Q. Tong, Met. Meter. Int. 24, 60 (2018) https://doi.org/10.1007/s12540-017-7201-z
  4. C. Garcia-mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 285 (2003)
  5. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18, 279 (2002) https://doi.org/10.1179/026708301225000725
  6. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7, 40 (2017) https://doi.org/10.3390/met7020040
  7. H.J. Hu, G. Xu, M.X. Zhou, Q. Yuan, Metals 6, 173 (2016) https://doi.org/10.3390/met6080173
  8. E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Weld. J. 85, 200 (2006)
  9. E. Keehan, H.O. Andren, L. Karlsson, M. Murugananth, H.K.D.H. Bhadeshia, in 6th International Conference on Trends in Welding Research, ed. by S.A. David, T. DebRoy, J.C. Lippold (ASM International, Phoenix, 2002), p. 695
  10. J.A. Omotoyinbo, O.O. Oluwole, Mater. Des. 30, 335 (2009) https://doi.org/10.1016/j.matdes.2008.04.060
  11. S. Zhang, P. Wang, D. Li, Y. Li, Mater. Des. 84, 385 (2015) https://doi.org/10.1016/j.matdes.2015.06.143
  12. Y.L. Chen, C.Z. Dong, Q.W. Cai, D.C. Wan, L. Li, Y. Qi, J. Mater. Eng. 3, 16 (2013)
  13. X.Y. Long, F.C. Zhang, J. Kang, B. Lv, X.B. Shi, Mater. Sci. Eng. A 594, 344 (2014) https://doi.org/10.1016/j.msea.2013.11.089
  14. J. Kobayashi, D. Ina, N. Yoshikawa, S. Koh-Ichi, ISIJ Int. 52, 1894 (2012) https://doi.org/10.2355/isijinternational.52.1894
  15. L.C. Chang, Metall. Mater. Trans. A 30, 909 (1999)
  16. L.H. Qian, Q. Zhou, F.C. Zhang, J.Y. Meng, M. Zhang, Y. Tian, Mater. Des. 39, 264 (2012) https://doi.org/10.1016/j.matdes.2012.02.053
  17. F. Hu, K.M. Wu, H. Zheng, Steel Res. Int. 84, 1060 (2013)
  18. M.X. Zhou, G. Xu, L. Wang, H.J. Hu, Trans. Indian Inst. Met. 69, 693 (2016) https://doi.org/10.1007/s12666-015-0541-9
  19. S. Baradari, M.A. Boutorabi, Mater. Des. 86, 603 (2015) https://doi.org/10.1016/j.matdes.2015.07.151
  20. M.X. Zhou, G. Xu, J.Y. Tian, H.J. Hu, Q. Yuan, Metals 7, 263 (2017) https://doi.org/10.3390/met7070263
  21. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2018). https://doi.org/10.1002/srin.20170 0469
  22. M.X. Zhou, G. Xu, H.J. Hu, Q. Yuan, J.Y. Tian, Steel Res. Int. (2016). https ://doi.org/10.1002/srin.20160 0377
  23. B. Ozturk, V.L. Fearing, J.A. Ruth, G. Simkovich, Solid State Ionics 12, 145 (1984) https://doi.org/10.1016/0167-2738(84)90141-3
  24. C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527, 3442 (2010) https://doi.org/10.1016/j.msea.2010.02.020
  25. D. Quidort, Y. Brechet, Scripta Mater. 47, 151 (2002) https://doi.org/10.1016/S1359-6462(02)00121-5
  26. J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, H.J. Hu, Trans. Indian Inst. Met. 71, 185 (2018) https://doi.org/10.1007/s12666-017-1151-5
  27. H.J. Hu, G. Xu, L. Wang, M.X. Zhou, Z.L. Xue, Met. Mater. Int. 21, 929 (2015) https://doi.org/10.1007/s12540-015-5156-5
  28. C. Garcia-Mateo, M. Peet, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 814 (2014)
  29. C. Garcia-Mateo, F.G. Caballero, Mater. Trans. 46, 1839 (2005) https://doi.org/10.2320/matertrans.46.1839
  30. B.C.D. Cooman, Curr. Opin. Solid State Mater. Sci. 8, 285 (2004) https://doi.org/10.1016/j.cossms.2004.10.002
  31. M. Pozuelo, J.E. Wittig, J.A. Jiménez, G. Frommeyer, Metal. Mater. Trans. A 40, 1826 (2009) https://doi.org/10.1007/s11661-009-9863-8
  32. G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee, J. Alloys Compd. 705, 817 (2017) https://doi.org/10.1016/j.jallcom.2017.02.164

Cited by

  1. Effect of austenisation temperature on bainite transformation below martensite starting temperature vol.35, pp.13, 2018, https://doi.org/10.1080/02670836.2019.1631946
  2. Transformation Behavior and Properties of Carbide-Free Bainite Steels with Different Si Contents vol.90, pp.3, 2019, https://doi.org/10.1002/srin.201800474
  3. Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels vol.26, pp.8, 2018, https://doi.org/10.1007/s42243-019-00253-7
  4. Effects of Nb on Bainite Transformation Behavior and Mechanical Properties of Low‐Carbon Bainitic Steels vol.90, pp.8, 2018, https://doi.org/10.1002/srin.201900050
  5. In-Situ Observation of Martensitic Transformation in a Fe-C-Mn-Si Bainitic Steel During Austempering vol.26, pp.7, 2018, https://doi.org/10.1007/s12540-019-00370-8
  6. Sintered Fe-Ni-Si-C alloys vol.1137, pp.1, 2018, https://doi.org/10.1088/1757-899x/1137/1/012035
  7. Effect of Ni addition on bainite microstructure of low-carbon special bar quality steels and its influence on CCT diagrams vol.15, pp.None, 2021, https://doi.org/10.1016/j.jmrt.2021.07.114
  8. The Corrosion and Wear Behaviors of a Medium-Carbon Bainitic Steel Treated by Boro-Austempering Process vol.11, pp.12, 2021, https://doi.org/10.3390/met11121959