Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.643

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels  

Lee, Junghoon (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology)
Shin, Sang Yong (School of Materials Science and Engineering University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 643-651 More about this Journal
Abstract
Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.
Keywords
high Mn TWIP steels; tensile properties; strain rate; temperature; work hardening rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Bouaziz, S. Allain and C. Scott, Scripta Mater., 58, 484 (2008).   DOI
2 S. Allain, J. P. Chateau and O. Bouaziz, Mater. Sci. Eng. A, 387, 143 (2004).
3 O. Bouaziz, S. Allain, C. Scott, P. Cugy and D., Curr. Opin. Solid St. M, 15, 141 (2011).   DOI
4 I. Choi, Y. Park, D. Son, S.-J. Kim and M. Moon, Met. Mater. Int., 16, 27 (2010).   DOI
5 N. Ma, T. Park, D. Kim, C. Kim and K. Chung, Met. Mater. Int., 16, 427 (2010).   DOI
6 G. E. Dieter, Mechanical Metallurgy, New York, McGraw-Hill Inc. (1990).
7 J. Kim, L. Chen, H. S. Kim, S.-K. Kim, Y. Estrin and B.C. De Cooman, Metall. Mater. Trans. A, 40A, 3147 (2009).
8 S. Curtze and V.-T. Kuokkala, Acta Mater., 58, 5129 (2010).   DOI
9 J. E. Jin and Y. K. Lee, Acta Mater., 60, 1680 (2012).   DOI
10 L. Chen, H. S. Kim, S. K. Kim and B. C. De Cooman, ISIJ Int., 47, 1804 (2007).   DOI
11 A. Roth, T. A. Lebedkina and M. A. Lebyodkin, Mater. Sci. Eng. A, 539, 280 (2012).   DOI
12 T. A. Lebedkina, M. A. Lebyodkin, J. P. Chateau, A. Jacques and S. Allain, Mater. Sci. Eng. A, 519, 147 (2009).   DOI
13 L. H. De Almeida, I. Le May and P. R. O. Emygdio, Mater. Charact., 41, 137 (1998).   DOI
14 A. H. Cottrell, Trans. Metall. Soc. AIME, 212, 192 (1958).
15 K. S. B. Rose and S. G. Glover, Acta Metall., 14, 1505 (1966).   DOI
16 S. Hong, S. Y. Shin, H. S. Kim, S. Lee, S. Kim, K. Chin and Nack J. Kim, Metall. Mater. Trans. A, 43, 1870 (2012).   DOI
17 S. Hong, S. Y. Shin, J. Lee, D-H Ahn, H. S. Kim, S.-K. Kim, K.-G. Chin and S. Lee, Metall. Mater. Trans. A, 45, 633 (2014).   DOI
18 G. Frommeyer, U. Brux and P. Neumann, ISIJ Int., 43, 438 (2003).   DOI
19 A. Dumay, J.-P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
20 N. S. Lim, H. S. Park, S. I. Kim and C. G. Park, Met. Mater. Int., 18, 647 (2012).   DOI
21 G. F. Bolling and R. H. Richman, Acta Metall., 13, 709 (1965).   DOI
22 L. Remy and A. Pineau, Mater. Sci. Eng., 28, 99 (1977).   DOI
23 S. Curtze and V-T. Kuokkala, Acta Metall., 15, 5129 (2010).