• Title/Summary/Keyword: transferred graphene

Search Result 48, Processing Time 0.027 seconds

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Water Contact Angles of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 물 접촉각 변화)

  • Yoon, Min-Ah;Kim, Chan;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.60-66
    • /
    • 2018
  • Graphene is a monolayer of carbon atoms (approximately 0.34 nm), arranged in a honeycomb network. It has been hailed as a next-generation flexible and transparent material because it has high electrical and thermal conductivities, excellent mechanical properties, as well as flexible and transparent properties. The wettability of graphene alters its adhesion or surface energy, and it is therefore an important parameter influencing its application in the fabrication of next-generation flexible and transparent electronics. Studies on the wettability of graphene are numerous and various opinions exist. However, almost all of these studies use the wet transfer method to transfer the graphene. In this study, therefore, we investigated the effect of wet and dry transfer methods on water contact angles of graphene on a substrate. The contact angles of substrates vary depending on the type of substrate. It was found that after graphene is transferred to the substrate, regardless of transfer method, the graphene/substrate contact angle increases to a value. The contact angle of graphene transferred using the dry transfer method is higher than the contact angle of graphene transferred using wet transfer methods. The wet transferred graphene is affected by the poly(methyl methacrylate) (PMMA) residue and the polar surface of substrate. The dry transferred graphene is influenced by the conformal contact between graphene and substrate.

Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 표면 에너지 변화)

  • Yoon, Min-Ah;Kim, Chan;Won, Sejeong;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF

Multilayered Graphene Electrode using One-Step Dry Transfer for Optoelectronics

  • Lee, Seungmin;Jo, Yeongsu;Hong, Soonkyu;Kim, Darae;Lee, Hyung Woo
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • In this study, multilayered graphene was easily transferred to the target substrate in one step using thermal release tape. The transmittance of the transferred graphene according to the number of layers was measured using a spectrophotometer. The sheet resistance was measured using a four-point probe system. Graphene formed using this transfer method showed almost the same electrical and optical properties as that formed using the conventional poly (methyl methacrylate) transfer method. This method is suitable for the mass production of graphene because of the short process time and easy large-area transfer. In addition, multilayered graphene can be transferred on various substrates without wetting problem using the one-step dry transfer method. In this work, this easy transfer method was used for dielectric substrates such as glass, paper and polyethylene terephthalate, and a sheet resistance of ~240 ohm/sq was obtained with three-layer graphene. By fabricating organic solar cells, we verified the feasibility of using this method for optoelectronic devices.

Origin of Tearing Paths in Transferred Graphene by H2 Bubbling Process and Improved Transfer of Tear-Free Graphene Films U sing a Heat Press

  • Jinsung Kwak
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.522-527
    • /
    • 2022
  • Among efforts to improve techniques for the chemical vapor deposition of large-area and high-quality graphene films on transition metal substrates, being able to reliably transfer these atomistic membranes onto the desired substrate is a critical step for various practical uses, such as graphene-based electronic and photonic devices. However, the most used approach, the wet etching transfer process based on the complete etching of metal substrates, remains a great challenge. This is mainly due to the inevitable damage to the graphene, unintentional contamination of the graphene layer, and increased production cost and time. Here, we report the systematic study of an H2 bubbling-assisted transfer technique for graphene films grown on Cu foils, which is nondestructive not only to the graphene film but also to the Cu substrate. Also, we demonstrate the origin of the graphene film tearing phenomenon induced by this H2 bubbling-assisted transfer process. This study reveals that inherent features are produced by rolling Cu foil, which cause a saw-like corrugation in the poly(methyl methacrylate) (PMMA)/graphene stack when it is transferred onto the target substrate after the Cu foil is dissolved. During the PMMA removal stage, the graphene tearing mainly appears at the apexes of the corrugated PMMA/graphene stack, due to weak adhesion to the target substrate. To address this, we have developed a modified heat-press-assisted transfer technique that has much better control of both tearing and the formation of residues in the transferred graphene films.

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero (균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정)

  • Park, Honghwi;Choi, Muhan;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

Synthesis of Graphene Using 3C-SiC Thin Films with Thermal Annealing Conditions (열처리 조건에 따른 3C-SiC 박막을 이용한 그래핀 합성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.385-388
    • /
    • 2012
  • This paper describes the synthesis and characterization of graphene by RTA process. Amorphous 3C-SiC were deposited using APCVD for carbon source and Ni layer were employed for transition layer. Various parameters of the ramping speed, the annealing time and the cooling speed are evaluated for the optimized combination allowed for the reproducible fabrication of graphene using 3C-SiC thin film. For analysis of crystalline Raman spectra was employed. Transferred graphene shows a high IG/ID ratio of 2.73. SEM and TEM images show the optical transparency and 6 carbon network, respectively. Au electrode deposited on the transferred graphene shows linear I-V curve and its resistance is 358 ${\Omega}$.

Retarding Effect of Transferred Graphene Layers on Intermetallic Compound Growth at The Interface between A Substrate and Pb-free Solder (기판과 무연솔더 계면에 전사된 그래핀 층의 금속간화합물 성장 지연 효과)

  • Yong-Ho Ko;Dong-Yurl Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • In this study, after transferring graphene on a Cu substrate and printing a Sn-3.0Ag-0.5Cu Pb-free solder paste on the Cu substrate, effects of the transferred graphene on formations and growths of intermetallic compound (IMC) at the interface between the Cu substrate and the solder were reported during processes of reflow soldering and isothermal aging for 1000 h with various temperatures (125, 150, and 175 ℃). Thicknesses of Cu6Sn5 and Cu3Sn IMCs at the interfaces with graphene were decreased during the reflow soldering and isothermal aging processes compared to those without graphene. The transferred graphene layers also showed that the growth rate constant and square of growth rate constant which related to the growth mechanisms of Cu6Sn5 and Cu3Sn IMCs with t he t emperature a nd t ime of t he i sothermal aging c ould dramatically decreased.