DOI QR코드

DOI QR Code

Water Contact Angles of Graphene Transferred by Wet and Dry Transfer Methods

전사 방법에 따른 그래핀의 물 접촉각 변화

  • Yoon, Min-Ah (Department of Nano-Mechatronics, University of Science and Technology (UST)) ;
  • Kim, Chan (Department of Nano-Mechatronics, University of Science and Technology (UST)) ;
  • Jung, Hyun-June (Center for Advanced Meta-Materials (CAMM)) ;
  • Kim, Jae-Hyun (Department of Nano-Mechatronics, University of Science and Technology (UST)) ;
  • Kim, Kwang-Seop (Department of Nano-Mechatronics, University of Science and Technology (UST))
  • 윤민아 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 김찬 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 정현준 (파동에너지극한제어연구단) ;
  • 김재현 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 김광섭 (과학기술연합대학원대학교 나노메카트로닉스학과)
  • Received : 2018.02.10
  • Accepted : 2018.03.15
  • Published : 2018.04.30

Abstract

Graphene is a monolayer of carbon atoms (approximately 0.34 nm), arranged in a honeycomb network. It has been hailed as a next-generation flexible and transparent material because it has high electrical and thermal conductivities, excellent mechanical properties, as well as flexible and transparent properties. The wettability of graphene alters its adhesion or surface energy, and it is therefore an important parameter influencing its application in the fabrication of next-generation flexible and transparent electronics. Studies on the wettability of graphene are numerous and various opinions exist. However, almost all of these studies use the wet transfer method to transfer the graphene. In this study, therefore, we investigated the effect of wet and dry transfer methods on water contact angles of graphene on a substrate. The contact angles of substrates vary depending on the type of substrate. It was found that after graphene is transferred to the substrate, regardless of transfer method, the graphene/substrate contact angle increases to a value. The contact angle of graphene transferred using the dry transfer method is higher than the contact angle of graphene transferred using wet transfer methods. The wet transferred graphene is affected by the poly(methyl methacrylate) (PMMA) residue and the polar surface of substrate. The dry transferred graphene is influenced by the conformal contact between graphene and substrate.

Keywords

References

  1. Das, T., Sharma, B. K., Katiyar, A. K., Ahn, J. H., "Graphene-based flexible and wearable electronics", J. Semicond., Vol. 39, No. 1, pp.011007, 2018. https://doi.org/10.1088/1674-4926/39/1/011007
  2. Kozbial, A., Li, Z., Sun, J., Gong, X., Zhou, F., Wang, Y., Xu, H., Liu, H., Li, L., "Understanding the intrinsic water wettability of graphite", Carbon, Vol. 74, pp. 218-225, 2014. https://doi.org/10.1016/j.carbon.2014.03.025
  3. Shih, C. J., Wang, Q. H., Lin, S., Park, K. C., Jin, Z., Strano, M. S., Blankschtein, D., "Breakdown in the wetting transparency of graphene", Phys. Rev. Lett., Vol. 109, pp. 176101, 2012. https://doi.org/10.1103/PhysRevLett.109.176101
  4. Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., Shi, Y., Ajayan, P. M., Koratkar, N. A., "Wetting transparency of graphene", Nat. Mater., Vol. 11, pp. 217-222, 2012. https://doi.org/10.1038/nmat3228
  5. Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S. P., Li, L., Liu, H., "Effect of airborne contaminants on the wettability of supported graphene and graphite", Nat. Mater., Vol. 12, pp. 925-931.
  6. Shih, C. J., Strano, M. S., Blankschtein, D., "Wetting translucency of graphene", Nat. Mater., Vol.12, pp. 866- 869, 2013. https://doi.org/10.1038/nmat3760
  7. Jo, K., Kim, S. M., Lee, S. M., Kim, J. H., Lee, H. J., Kim, K. S., Kwon, Y. D., Kim, K. S., "One-step etching, doping, and adhesion-control process for graphene electrodes", Carbon, Vol. 82, pp. 168-175, 2015. https://doi.org/10.1016/j.carbon.2014.10.059
  8. Choi, T., Kim, S. J., Park, S., Hwang, T. Y., Jeon, Y., Hong, B. H., "Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion", Nanoscale, Vol. 7, pp. 7138-7142, 2015. https://doi.org/10.1039/C4NR06991A
  9. Israelachvili, J. N., Intermolecular and surface forces, 3rd ed., Elsevier, USA, 2011.
  10. Lee, S. M., Kim, S. M., Na, M., Y., Chang, H. J., Kim, K. S., Yu, H., Lee, H. J., Kim, J. H., "Materialization of strained CVD-graphene using thermal mismatch", Nano Research, Vol. 8, pp. 2082-2091, 2015. https://doi.org/10.1007/s12274-015-0719-9