Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.4.305

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells  

Jo, Yeongsu (Department of Nano Fusion Technology, Pusan National University)
Woo, Chae Young (Department of Nano Fusion Technology, Pusan National University)
Hong, Soon Kyu (Department of Nano Fusion Technology, Pusan National University)
Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
Publication Information
Journal of Powder Materials / v.27, no.4, 2020 , pp. 305-310 More about this Journal
Abstract
In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.
Keywords
Zinc oxide nanopowder; Graphene; Dry transfer; Organic solar cells;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. K. Geim: Science, 324 (2009) 1530.   DOI
2 Y. Zhu, S. Murail, W. Cai, X. Li, J. W. Suk and J. R. Potts: Adv. Mater., 22 (2010) 3906.   DOI
3 B. K. Sharma and J. Ahn: Solid-State Electron., 89 (2013) 177.   DOI
4 H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic and J. Kong: Nanotechnology, 21 (2010) 505204.   DOI
5 Y. B. Tan and J. Lee: J. Mater. Chem. A, 1 (2013) 14814.   DOI
6 V. Tozzini and V. Pellegrini: Phys. Chem. Chem. Phys., 15 (2013) 80.   DOI
7 J. Kang, D. Shin, S. Bae and B. H. Hong; Nanoscale, 4 (2012) 5527.   DOI
8 A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu and J. Kong: J. Phys. Chem. C, 112 (2008) 17741.   DOI
9 S. Lee, Y. Jo, S. Hong, D. Kim and H. W. Lee: Current Optics and Photonics, 1 (2017) 7.   DOI
10 X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. Ahn. Hacker: ACS Nano, 11 (2011) 9144.
11 C. Woo, Y. Jo, S. Hong and H. W. Lee; J. Korean Powder Metall. Inst., 26 (2019) 11.   DOI
12 M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. Kim, J. Kim, J. Park, Y. Kang, J. Heo, J. H. Park and J. Kang: Adv. Funct. Mater., 23 (2013) 4177.   DOI
13 S. Jung, S. Lee, M. Song, D. Kim, D. S. You, J. Kim, C. S. Kim, T. Kim, K. Kim, J. Kim and J. Kang: Adv. Energy Mater., 4 (2014) 1300474.   DOI
14 H. Park, P. R. Brown, V. Bulovic and J. Kong; Nano Lett., 12 (2012) 133.   DOI
15 S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi and H. Park: Nano Lett., 18 (2018) 1337.   DOI
16 M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito: Nano Lett., 10 (2010) 751.   DOI
17 V. T. Nguyen, H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen and N. M. Phan: Adv. Nat. Sci., 4 (2013) 035012.   DOI
18 A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim and J. Park: Science, 336 (2012) 1143.   DOI
19 S. Yang, S. Choi, F. O. O. Ngome, K. Kim, S. Choi and C. Kim: Nano Lett., 19 (2019) 3590.   DOI