• Title/Summary/Keyword: traffic accident prediction

Search Result 112, Processing Time 0.02 seconds

Evaluating of Risk Order for Urban Road by User Cost Analysis (사용자비용분석을 통한 간선도로 위험순위 산정에 관한 연구)

  • Park, Jung-Ha;Park, Tae-Hoon;Im, Jong-Moon;Park, Je-Jin;Yoon, Pan;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.77-86
    • /
    • 2005
  • Level of service(LOS) is a quantify measure describing operational conditions within a traffic stream, generally, in terms of such service measures as speed, travel time, freedom to measures, traffic interruptions, comfort and convenience. The LOS is leveled by highway facilities according to measure of effectiveness(MOE) and then used to evaluate performance capacity. The current evaluation of a urban road is performed by only a aspect of traffic operation without any concepts of safety. Therefore, this paper presents a method for evaluation of risk order for urban road with new MOE, user cost analysis, considering both smooth traffic operation(congestion) and traffic safety(accident). The user coat is included traffic accident cast by traffic safety and traffic congestion cost by traffic operation. First of all, a number of traffic accident and accident rate by highway geometric is inferred from urban road traffic accident prediction model (Poul Greibe(2001)) Secondly, a user cost is inferred as traffic accident cast and traffic congestion cost is putting together. Thirdly, a method for evaluation of a urban road is inferred by user cost analysis. Fourthly a accident rate by segment predict with traffic accidents and data related to the accidents in $1996{\sim}1998$ on 11 urban road segments, Gwang-Ju, predicted accident rate. Traffic accident cost predict using predicted accident rate, and, traffic congestion cost predict using predicted average traffic speed(KHCM). Fifthly, a risk order are presented by predicted user cost at each segment in urban roads. Finally, it si compared and evaluated that LOS of 11 urban road segments, Gwang-Ju, by only a aspect of traffic operation without any concepts of safety and risk order by a method for evaluation of urban road in this paper.

Analysis of the Characteristic of Railroad(level-crossing) Accident Frequency (철도 건널목 사고의 발생빈도 특성분석 연구)

  • Park, Jun-Tae;Kang, Pal-Moon;Park, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.76-81
    • /
    • 2014
  • Railroad traffic accident consists of train accident, level-crossing accident, traffic death and injury accident caused by train or vehicle, and it is showing a continuous downward trend over a long period of time. As a result of the frequency comparison of train accidents and level-crossing accidents using the railway accident statistics data of Railway Industry Information Center, the share of train accident is over 90% in the 1990s and 80% in the 2000s more than the one of level-crossing accidents. In this study, we investigated time series characteristic and short-term prediction of railroad crossing, as well as seasonal characteristic. The analysis data has been accumulated over the past 20 years by using the frequency data of level-crossing accident, and was used as a frequency data per month and year. As a result of the analysis, the frequency of accident has the characteristics of the seasonal occurrence, and it doesn't show the significant decreasing trend in a short-term.

A Study for Development of Expressway Traffic Accident Prediction Model Using Deep Learning (딥 러닝을 이용한 고속도로 교통사고 건수 예측모형 개발에 관한 연구)

  • Rye, Jong-Deug;Park, Sangmin;Park, Sungho;Kwon, Cheolwoo;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.14-25
    • /
    • 2018
  • In recent years, it has become technically easier to explain factors related with traffic accidents in the Big Data era. Therefore, it is necessary to apply the latest analysis techniques to analyze the traffic accident data and to seek for new findings. The purpose of this study is to compare the predictive performance of the negative binomial regression model and the deep learning method developed in this study to predict the frequency of traffic accidents in expressways. As a result, the MOEs of the deep learning model are somewhat superior to those of the negative binomial regression model in terms of prediction performance. However, using a deep learning model could increase the predictive reliability. However, it is easy to add other independent variables when using deep learning, and it can be expected to increase the predictive reliability even if the model structure is changed.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

Development of a Traffic Accident Prediction Model for Urban Signalized Intersections (도시부 신호교차로 안전성 향상을 위한 사고예측모형 개발)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Jang-Wook;Lee, Dong-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.99-110
    • /
    • 2008
  • It is commonly estimated that there is a much higher potential for accidents at a crossroads than along a single road due to its plethora of conflicting points. According to the 2006 figures by the National Police Agency, the number of traffic accidents at crossroads is greatly increasing compared to that along single roads. Among others, crossroads installed with traffic signals have more varied influential factors for traffic accidents and leave much more room for improvement than ones without traffic signals; thus, it is expected that a noticeable effect could be achieved in safety if proper counter-measures against the hazards at a crossroads were taken together with an estimate of causes for accidents This research managed to develop models for accident forecasts and accident intensity by applying data on accident history and site inspection of crossroads, targeting four selected downtown crossroads installed with traffic signals. The research was done by roughly dividing the process into four stages: first, analyze the accident model examined before; second, select variables affecting traffic accidents; third, develop a model for traffic accident forecasting by using a statistics-based methodology; and fourth, carry out the verification process of the models.

Development of Accident Prediction Models for Freeway Interchange Ramps (고속도로 인터체인지 연결로에서의 교통사고 예측모형 개발)

  • Park, Hyo-Sin;Son, Bong-Su;Kim, Hyeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.123-135
    • /
    • 2007
  • The objective of this study is to analyze the relationship between traffic accidents occurring at trumpet interchange ramps according to accident type as well as the relevant factors that led to the traffic accidents, such as geometric design elements and traffic volumes. In the process of analysis of the distribution of traffic accidents, negative binomial distribution was selected as the most appropriate model. Negative binomial regression models were developed for total trumpet interchange ramps, direct ramps, loop ramps and semi-direct ramps based on the negative binomial distribution. Based upon several statistical diagnostics of the difference between observed accidents and predicted accidents with four previously developed models, the fit proved to be reasonable. Understanding of statistically significant variables in the developed model will enable designers to increase efficiency in terms of road operations and the development of traffic accident prevention policies in accordance with road design features.

Forecasting of Real Time Traffic Situation using Neural Network and Sensor Database Management System (신경망과데이터베이스 관리시스템을 이용한 실시간 교통상황 예보)

  • Jin, Hyun-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.248-250
    • /
    • 2008
  • This paper proposes a prediction method to prevent traffic accident and reduce to vehicle waiting time using neural network. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive traffic light system dose not consider coordinating green time. Moreover, we present neural network approach for traffic accident prediction with unnormalized (actual or original collected) data. This approach is not consider the maximum value of data and possible use the network without normalizing but the predictive accuracy is better. Also, the unnormalized method shows better predictive accuracy than the normalized method given by maximum value. Therefore, we can make the best use of this model in software reliability prediction using unnormalized data. Computer simulation results proved reducing traffic accident waiting time which proposed neural network better than conventional system dosen't consider neural network.

  • PDF

Study on the Development of Truck Traffic Accident Prediction Models and Safety Rating on Expressways (고속도로 화물차 교통사고 건수 예측모형 및 안전등급 개발 연구)

  • Jungeun Yoon;Harim Jeong;Jangho Park;Donghyo Kang;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • In this study, the number of truck traffic accidents was predicted by using Poisson and negative binomial regression analysis to understand what factors affect accidents using expressway data. Significant variables in the truck traffic accident prediction model were continuous driving time, link length, truck traffic volume. number of bridges and number of drowsy shelters. The calculated LOSS rating was expressed on the national expressway network to diagnose the risk of truck accidents. This is expected to be used as basic data for policy establishment to reduce truck accidents on expressways.

The effect of road weather factors on traffic accident - Focused on Busan area - (도로위의 기상요인이 교통사고에 미치는 영향 - 부산지역을 중심으로 -)

  • Lee, Kyeongjun;Jung, Imgook;Noh, Yunhwan;Yoon, Sanggyeong;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.661-668
    • /
    • 2015
  • Them traffic accidents have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. The carelessness of drivers, many road weather factors have a great influence on the traffic accidents. Especially, the number of traffic accident is governed by precipitation, visibility, humidity, cloud amounts and temperature. The purpose of this paper is to analyse the effect of road weather factors on traffic accident. We use the data of traffic accident, AWS weather factors (precipitation, existence of rainfall, temperature, wind speed), time zone and day of the week in 2013. We did statistical analysis using logistic regression analysis and decision tree analysis. These prediction models may be used to predict the traffic accident according to the weather condition.

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.