DOI QR코드

DOI QR Code

The effect of road weather factors on traffic accident - Focused on Busan area -

도로위의 기상요인이 교통사고에 미치는 영향 - 부산지역을 중심으로 -

  • Received : 2015.03.26
  • Accepted : 2015.04.27
  • Published : 2015.05.31

Abstract

Them traffic accidents have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. The carelessness of drivers, many road weather factors have a great influence on the traffic accidents. Especially, the number of traffic accident is governed by precipitation, visibility, humidity, cloud amounts and temperature. The purpose of this paper is to analyse the effect of road weather factors on traffic accident. We use the data of traffic accident, AWS weather factors (precipitation, existence of rainfall, temperature, wind speed), time zone and day of the week in 2013. We did statistical analysis using logistic regression analysis and decision tree analysis. These prediction models may be used to predict the traffic accident according to the weather condition.

교통사고는 인구의 증가와 그에 따른 자동차의 증가로 인하여 매년 증가하고 있다. 그러한 교통사고의 원인은 운전자의 부주의뿐만 아니라 도로상의 기상상황에 의해 영향을 받는다. 특히, 강수량, 시계, 습도, 흐림 정도, 기온 등에 의해 많은 교통사고들이 영향을 받는다. 따라서 본 연구는 다양한 기상 요인의 영향 정도에 따른 교통사고 발생 유무의 분석을 목적으로 하였다. 부산 해운대구의 센텀남대로 및 해운대로의 2013년도 교통사고 발생 자료와 지역별 상세 기상 관측 자료인 AWS 기상자료(시간당 강수량, 강수유무, 기온, 풍속), 시간대, 요일을 활용하여 로지스틱 회귀모형 및 의사결정나무모형을 이용하여 분석하였다. 그 결과 기상 요인 중 강수유무와 기온이 교통사고 발생에 영향을 미치는 요인으로 나타났다. 이러한 결과는 도로위의 기상상태에 따른 교통사고의 발생을 예측하는데 유용하게 사용할 수 있을 것이다.

Keywords

References

  1. Cho, J. S. (2014). Analysis of employee's characteristic using data visualization. Journal of the Korean Data & Information Science Society, 25, 727-736. https://doi.org/10.7465/jkdi.2014.25.4.727
  2. Ibrahim, A. T. and Hall, F. L. (1994). Effect of adverse weather conditions on speed-flow-occupancy relationships, Transportation Research Board, Washington
  3. Jeong, S. J. (2011). A study of the characteristics of traffic accidents in rainy conditions on freeways, Master Thesis, University of Seoul, Seoul.
  4. Lee, J. Y. and Kim, H. J. (2014). Identification of major risk factors association with respiratory diseases by data mining. Journal of the Korean Data & Information Science Society, 25, 373-384. https://doi.org/10.7465/jkdi.2014.25.2.373
  5. Lynn A. S. and Barbara C. F. (1978). An analysis of the relationship between rainfall and the occurrence of traffic accidents. Journal of Applied Meteorology, 17, 711-715. https://doi.org/10.1175/1520-0450(1978)017<0711:AAOTRB>2.0.CO;2
  6. Oh, J. S., Shim, Y. U. and Cho, Y. H. (2002). Effect of weather conditions to traffic flow on freeway. KSCE Journal of Civil Engineering, 6, 413-420. https://doi.org/10.1007/BF02841995
  7. Park, C. and Choi, H. S. (2014). An educational tool for binary logistic regression model using Excel VBA. Journal of the Korean Data & Information Science Society, 25, 403-410. https://doi.org/10.7465/jkdi.2014.25.2.403
  8. Park, C. and Kye, M. J. (2013). Penalized logistic regression models for determining the discharge of dyspnea patients. Journal of the Korean Data & Information Science Society, 24, 125-133. https://doi.org/10.7465/jkdi.2013.24.1.125
  9. Rosenbaum, P. R. and Bubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55. https://doi.org/10.1093/biomet/70.1.41
  10. Seok, K, H. and Lee, T. W. (2013). Comparison of data mining methods with daily lens data. Journal of the Korean Data & Information Science Society, 24, 1341-1348. https://doi.org/10.7465/jkdi.2013.24.6.1341

Cited by

  1. 실시간 기상 및 대기 데이터를 활용한 도시안전서비스 시스템 설계 및 구현 vol.21, pp.5, 2015, https://doi.org/10.9717/kmms.2018.21.5.599
  2. 도로기상 서비스를 위한 실시간 자료처리 및 시각화 vol.18, pp.4, 2015, https://doi.org/10.14400/jdc.2020.18.4.221
  3. Impacts of Meteorological Factors on 119 Emergency Medical Services: Focused on Busan vol.20, pp.6, 2015, https://doi.org/10.9798/kosham.2020.20.6.93