• Title/Summary/Keyword: tracheal surface epithelial cell

Search Result 19, Processing Time 0.019 seconds

Effects of Gamichihyo-san and Gamiijung-tang on Airway Mucus Secretion (가미치효산 및 가미이중탕이 기도 객담 분비에 미치는 영향)

  • Ryu In Sun;Kim Yoon Sik;Seol In Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1746-1751
    • /
    • 2004
  • This study was done to investigate the effects of Gamichihyo-san and Gamiijung-tang on airway mucus secretion. After administer Gamichihyo-san(GCHS) and Gamiijung-tang(GIJT) extract to Golden Syrian Hamster for 8-10 weeks, we examined mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Following results were obtained; GCHG significantly stimulated mucin release from cultured HTSE cells, with minute cytotoxicity GIJT did not affect mucin release and have no cytotoxicity; GCHG and GIJT did not affect contractility of isolated tracheal smooth muscle. These results suggest that Gamichihyo-san might be usefully applied for airway mucus secretion.

Effects of Socheongryong-tang and Kamichihyo-san on Mucin Secretion from Airway Goblet (소청용탕 및 가미치효산이 평흡기 배장세포로부터의 뮤신 분비에 미치는 영향)

  • Na Do gyun;Lee Choong Jae;Park Yang Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.734-739
    • /
    • 2004
  • In the present study, the author intended to investigate whether two oriental medical prescriptions named socheongryong-tang(SCRT) and Kamichihyo-san(KCHS) significantly affect mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with ³H-glucosamine for 24 hrs and chased for 30 min in the presence of SCRT or KCHS to assess the effect of each agent on ³H-mucin release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Also, the effects of SCRT and KCHS on contractility of isolated tracheal smooth muscle were investigated. The results were as follows: (1) SCRT significantly inhibited mucin release from cultured HTSE cells, without cytotoxicity; (2) KCHS significantly increased mucin release without cytotoxicity; (3) SCRT and KCHS did not affect contractility of isolated tracheal smooth muscle. We suggest that the effects of SCRT and its components should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which have the possible inhibitory effects on mucin release from the viewpoint of management of hypersecretion of airway mucus.

Effects of CheongGeumGangHwa-Tang(CGGH), GwaRuJiSil-Tang(GRJS) on mucin secretion from airway goblet cells (청금강화탕(淸金降火湯 ) 및 과루지실탕(瓜蔞枳實湯)이 호흡기(呼吸器) 배상세포(杯狀細胞)로부터의 뮤신 분비(分泌)에 미치는 영향)

  • Lee, Joung-Eun;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.238-244
    • /
    • 2004
  • Objective : This study is intended to investigate whether the two oriental medical prescriptions, CheongGeumGangHwa-tang(CGGH) and GwaRuJiSil-tang(GRJS), significantly affect mucin release from cultured hamster tracheal surface epithelial(HTSE) cells. Materials and Methods : Confluent HTSE cells were metabolically radio labeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of CGGH or GRJS to assess the effect of each agent on 3H-mucin release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Also, the effects of CGGH and GRJS on contractility of isolated tracheal smooth muscle were investigated. Results : (1) CGGH and GRJS significantly increased mucin release from cultured HTSE cells, without cytotoxicity : (2) CGGH and GRJS did not affect contractility of isolated tracheal smooth muscle. Conclusions : These results suggest that the effects of CGGH and GRJS should be further investigated, and that it would be gainful to invesigate, from among oriental medical prescriptions, what novel agents have these mild expectorant effects on mucin secretion from airway goblet cells.

  • PDF

Effects of Gamisingi-tang and Gamicheongpye-tang on Airway Mucus Secretion (가미신기탕(加味腎氣湯) 및 가미청폐탕(加味淸肺湯)이 기도점액 분비 및 기관평활근 긴장도에 미치는 영향)

  • Kim Yun-Hee;Kang Tak-Lim;Han Dal-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.156-162
    • /
    • 2006
  • In the present study, the author intended to investigate whether two oriental medical prescriptions named GSGT and GCPT significantly affect mucin release from cultured hamster tracheal surface epithelial (HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presen+ce of GSGT or GCPT to assess the effect of each agent on 3H-mucin release. Possible cytotoxicities of each agent were assessed dy measuring lactate dehydrogenase(LDH) release. Also, the effects of GSGT and GCPT on contractility of isolated tracheal smooth muscle were investigated. (1) GSGT did not affect mucin release without cytotoxicity ; (2) GCPT significantly stimulated mucin release from cultured HTSE cells, with significant cytotoxicity ; (3) GSGT and GCPT did not affect contractility of isolated tracheal smooth muscle. We suggest that the effects of GCPT and its components should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which have potent expectorant effects on mucin secretion from airway goblet cells.

Involvement of phospholipase $A_2$ in ATP-induced mucin release from cultured Hamster Tracheal Surface Epithelial cells

  • Jo, M.;Ko, K.H.;Kim, K.C.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.219-219
    • /
    • 1996
  • Mucin release from hamster tracheal surface epithelial(HTSE) cells can be stimulated by extracellular ATP via activation of P$_2$ purinoceptors located on the cell surface which appears to be coupled to phospholipase C via G proteins. However, our preliminary data indicate that the ATP-induced mucin release involves, in part, activation of PKC, but not an increase in the intracellular Ca++ level, suggesting the presence of another pathway which is separate from the PLC-PKC pathway, In this study, we intended to confirm the previous observation and subsequently identify an additional mechanism. Confluent HTSE cells were metabolically labeled with either $^3$H-glucosamine or $^3$H-arachidonic acid(AA), and release of either $^3$H-mucin or $^3$H-AA was quantified following various treatments. $^3$H-mucin was assayed using the sepharose CL-4B gel-filtration method, whereas $^3$H-AA liberation was measured by counting $^3$H-radioactivity in the chase medium. We found that: (1)Desensitization of PKC by pretreatment with PMA completely abolished the mucin releasing effect of PMA but partially inhibited the ATP-induced mucin release; (2) ATP increases release of $^3$H-AA in a dose-dependent fashion; (3) mepacrine, an inhibitor of PLA$_2$, attenuates ATP-induced mucin release in a dose-dependent fashion. These results confirm our previous notion that the PLC-PKC pathway is responsible, in part, for ATP-induced mucin release. Furthermore, activation of PLA$_2$ appears to be an additional pathway which is involved in ATP-induced mucin release.

  • PDF

Effects of HaengSoTang(HST), Gami-PalMiHwan(GPMH) on mucin secretion from airway goblet cells (행소탕(杏蘇湯) 및 가미팔미환(加味八味丸)이 호흡기(呼吸器) 배상세포(杯狀細胞)로부터의 뮤신 분비(分泌)에 미치는 영향)

  • Lim, Do-Hee;Lee, Joung-Eun;Han, Young-Joo;Hwang, Ji-Ho;Cho, Cheol-Jun;Bae, Han-Ho;Chae, Eun-Young;Park, Yang-Chun
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.221-228
    • /
    • 2005
  • The intent of this study is to investigate whether two oriental medical prescriptions named haengsotang(HST) and gami-palmihwan(GPMH) significantly effect mucin release from cultured hamster tracheal surface epithelial(HTSE) cells, Confluent HTSE cells were metabolically radiolabeled with $^3H-glucosamine$ for 24 hrs and chased for 30 min in the presence of HST or GPMH to assess the effect of each agent on $^3H-mucin$ release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Also, the effects of HST and GPMH on contractility of isolated tracheal smooth muscle were investigated. The results are consistant with the following assertions: (1) HST significantly inhibited mucin release from cultured HTSE cells, without cytotoxicity; (2) GPMH did not effect mucin release without cytotoxicity; (3) HST and GPMH did not effect contractility of isolated tracheal smooth muscle. These results suggest a need for further investigation of HST and its components, for its potential in oriental medicine prescriptions and novel agents that effectively regulate (inhibit) mucin secretion from airway goblet cells.

  • PDF

The Study on Mucin Release by Airway Goblet Cells in Primary Culture

  • Yang, Ji-Sun;Kim, Ok-Hee;Roh, Yong-Nam;Yi, Sook-Young;Park, Ki-Hwan;Rheu, Hang-Mook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.89-89
    • /
    • 1995
  • Surface epithelial cells isolated from hamster tracheas and grown on a thick collagen gel become a highly enriched population of mucus-secreting cells. Epithelial cells from tracheas of hamsters were collected using enzymatic procedures and cultured under various conditions. The medium used consisted of a 1:1 mixture of medium 199 and Dulbecco's modified Eagle's (DME) medium which was conditioned before use. Insulin, transferrin, hydrocortisone, epidermal growth factor, and extract from bovine hypothalamus were used as supplement. Due to relatively low basal rates of min secretion from in vitro cultures, cultures are generally radiolabeled using $^3$H-glucosamine as a metabolic precursor. The radiolabeled mucinsreleased are quantitated by precipitation with TCA/PTA. Using this cell culture system, we investigated mucin release of goblet cells by altering the media bathing the apical surface of hamster tracheal surface epithelial(HTSE) cells. Acidic media added sulfuric acid caused sigcificant increases in mucin relesse (155${\pm}$20% at pH 4 and 146${\pm}$16% at, pH 5). Ammonium hydroxide also increased mucin release at pH 9.0(156${\pm}$17%) and pH 10(295${\pm}$9%) respectively. This additional mucin release seems to be associated with cell membrane damage as indicated by release of cellular LDH. SP stimulates secretion of mucin in cultured HTSE cells(154${\pm}$16% at 1${\times}$10$\^$-6/M and 165${\pm}$25% at 1${\times}$10$\^$-5/M. PAF at 5${\times}$10$\^$-6/M and 5${\times}$10$\^$-5/M enhanced by HTSE cells in vitro 168${\pm}$34% and 259${\pm}$30% of mucin secretion, respectively. The increase in mucin release by PAF and SP was not secondary to cell damage or necrosis. SP and PAF may be in mediating mucous secretion induced by inflammation irritantion and infection.

  • PDF

Studies on the Effects of Several Oriental Herbal Medicines on mucin secretion from Primary Cultured Respiratory (가미신기탕(加味腎氣湯) 등 수종(數種) 방제(方劑)가 일차배양 호흡기 상피세포에서의 점액 분비에 미치는 영향)

  • Kim, Yun-Hee;Kim, Jeong-Sook
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.109-135
    • /
    • 2006
  • Objective : In the present study, the author tried to investigate whether six oriental medical prescriptions named gamisingitang (SGT), gamijungtang (IJT), gamicheongpyetang (CPT), galhwengchihyosan (CHS), chwiyeontong (CYT), sigyoungcheongpyetang (SCPT) significantly affect mucin release from cultured hamster tracheal surface epithelial (HTSE) cells. Methode : Confluent HTSE cells were inetabolically radiolabeled with $^{3}H-glucosamine$ for 24 hrs and chased for 30 min in the presence of drugs aforementioned, respectively, to assess the effect of each drug on $^{3}H-mucin$ release. Possible cytotoxicities of effective drugs were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, total elution profiles of control spent media and treatment sample (CPT, CHS, SCPT and CYT) through Sepharose CL-4B column were analysed and effect of CPT, CHS and CYT on MUC5AC mRNA expression in cultured HTSE cells were invsetigated. Results : (1) SGT and IJT did not affect mucin release without cytotoxicity; (2) CPT, SCPT and CHS significantly stimulated mucin release from cultured HTSE cells, with significant cytotoxicity; (4) CPT, CHS, SCPT and CYT chiefly affected the 'mucin' release and did not affect significantly the release of the releasable glycoproteins with less molecular weight than mucin. This result suggests that the four herbal prescriptions specifically affect the release of mucin ; (5) CTP and CHS did not significantly affect the expression levels of MUC 5AC mRNA, however, CYT significantly inhibit the expression levels of MUC 5AC mRNA. Conclusion : CYT can decrease the synthesis of mucin at gene level in cultured HTSE cells.

  • PDF

Effect of Jawan-Chihyosan and Gwaru-Jisiltang on Secretion of Mucin by the First Cultivated Goblet Cells of Rodent's Airway (자완치효산(紫莞治哮散散)과 과루지실탕(瓜蔞枳實湯)이 일차배양된 설치류(齧齒類) 기도(氣道) 배상세포(杯狀細胞)에서의 뮤신 분비에 미치는 영향)

  • Park Jung-Joon;Kim Yoon-Sik;Seol In-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2006
  • In the present study, the author tried to investigate whether four oriental medical prescriptions named, jawan-chihyosan (CHS), gwaru-jisiltang (GJT), and several single compounds, kaempferol, coumarin, betaine and ursolic acid significantly affect mucin release from cultured hamster tracheal surface epithelial (HTSE) cells. Confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of CHS, GJT, kaempferol, coumarin, betaine and ursolic acid, respectively, to assess the effect of each agent on 3H-mucin release. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, total elution profiles of control spent media and treatment sample (CHS and GJT) through Sepharose CL-4B column were analysed and effect of CHS and GJT on MUC5AC mRNA expression in cultured HTSE cells were investigated. The results were as follows : (1) CHS and GJT significantly stimulated mucin release from cultured HTSE cells, with significant cytotoxicity , (2) CHS and GJT chiefly stimulated the 'mucin' release and did not affect significantly the release of the other releasable glycoproteins with less molecular weight than mucin. This result suggests that the three herbal prescriptions specifically stimulate the release of mucin ; (3) CHS and GJT significantly increased the expression levels of MUC 5AC mRNA. This result suggests that the three herbal prescriptions can affect the synthesis of mucin at gene level in cultured HTSE cells ; (4) Kaempferol and coumarin did not affect mucin release, however, betaine and ursolic acid stimulated mucin release. All the agents did not show significant cytotoxicity. We suggest that the effects of CHS and GJT, betaine and ursolic acid should be further investigated and it is of great value to find, from oriental medical prescriptions, novel agents which have the effective expectorant or mucoregulative effect on mucin secretion from airway goblet cells.