• 제목/요약/키워드: total strain approach

검색결과 72건 처리시간 0.024초

2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구 (A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass)

  • 서창민;오명석
    • 한국해양공학회지
    • /
    • 제10권1호
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

미소변형률 및 대변형률 조건의 거동에 대한 비등방경화 탄소성 구성모델 (An Anisotropic Hardening Elasto-Plastic Constitutive Model for the Behavior at Small-to-Large Strain Conditions)

  • 오세붕;권기철;정순용;김동수
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.65-73
    • /
    • 2000
  • 본 연구에서는 미소변형률에서 대변형률까지의 거동을 모델할 수 있는 탄소성 구성모델을 개발하였다. 제안된 구성모델은 일반 등방경화규칙에 근거한 비등방 경화규칙과 전응력 개념을 토대로 개발하였다. 그리고 제안된 구성관계가 기존의 대표적 구성모델을 포함하고 있음을 수학적으로 입증하였다. 국내 화강풍화토에 대한 공진주시험, 비틂전단시험, 삼축시험 등 일련의 실내시험 결과를 이용하여 검증한 결과, 쌍곡선 모델 및 Ramberg-Osgood모델과 비교하여 제안된 모델은 미소변형률에서 대변형률까지의 거동을 더욱 일관되고 정확하게 모델할 수 있다. 또한 비틂전단시험 결과와의 비교에서는, 미소변형률 조건에서 나타나는 비선형성을 적합하게 예측할 수 있었다.

  • PDF

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression

  • Yang, Fan;Gong, Yanfen;Liu, Gang;Zhao, Shengming;Wang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1101-1107
    • /
    • 2015
  • The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.

보강용 지오신세틱스의 가속 인장 크리프 시험방법 (Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement)

  • 구현진;조항원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

Theoretical Considerations on Effect of Environments on Strain Hardening

  • Lee, Byoung-Whie
    • Nuclear Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.21-31
    • /
    • 1971
  • 금속의 소성변형에 필요한 일의 일부는 전표면자유에너지 (Total Surface Free Energy)의 변화에 소모된다. 전표면자유에너지 변화는 비표면 자유에너지 (Specific Surface Free Energy)에 의해 변화하며 비표면자유에너지는 분위기에 따라 달라 진다. 열역학적규명, 체적불변율과 흡착으로 인한 두 개의 판이하게 다른 강화 혹은 약화를 초래하는 전위(Dislocation) 상호작용기구를 기반으로 금속의 소성변형으로 인한 가공경화, 응력 및 에너지에 미치는 분위기의 영향을 이론식으로 도출했다. 이론식은 진공중금속표면장력 (${\gamma}$$_{s}$), 개면장력 (${\gamma}$$_{se}$ ), 포면전위밀도($\rho$$_{s}$), 내부전위 밀도($\rho$$_{i}$)와 표면노출율(f)의 함수로 표시할 수 있었다. 이론식을 이용하여 각기 다른 분위기내에서의 금속의 기계특성을 예측 비교해봤다.다.다.

  • PDF

비조질강 온간단조를 위한 공정검토 (Study of Warm Forging Process for Non-Heat-Treated Steel)

  • 박종수;강정대;이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

일체식교량의 접속슬래브 연결철근 형상에 따른 연결부 구조거동에 대한 실험연구 (Experimental Study on the Structural Behavior of Typical Bar Connections of Approach Slab in the Integral Abutment Bridge)

  • 유성근;김나연;김호섭;김현기;김영호
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.24-35
    • /
    • 2014
  • An experimental study on the structural behavior of connection types between approach slab and integral abutment has been done for three typical bar connections. Typical hinge style reinforcing bar detail for its connection is preferred in order to accommodate rotation of the approach slab among engineers. However, the straight horizontal bars can be used as connection detail accomodate structural capacity. Total six specimens with three types of rebar detail are tested for direct tensile and bending load. The characteristic structural behaviors are carefully monitored and all the strain gauge data obtained are analyzed. It is shown that the structural performance of all the specimens well exceed its design allowance. Several design suggestions are given based on careful reviews on the experiment.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.